Private water supplies, which are the primary source of drinking water for rural communities in developed countries, are at risk of becoming fecally contaminated. It is important to identify the source of contamination in order to better understand and address this human health risk. Microbial source tracking methods using human, bovine and general Bacteroidales markers were performed on 716 well water samples from southeastern Ontario, which had previously tested positive for Escherichia coli. The results were then geospatially analyzed in order to elucidate contamination patterns. Markers for human feces were found in nearly half (49%) of all samples tested, and a statistically significant spatial cluster was observed. A quarter of the samples tested positive for only general Bacteroidales markers (25.7%) and relatively few bovine specific marker positives (12.6%) were found. These findings are fundamental to the understanding of pathogen dynamics and risk in the context of drinking well water and will inform future research regarding host-specific pathogens in private well water samples.
Abstract.Research to date has provided limited insight into the complexity of water-borne pathogen transmission. Private well water supplies have been identified as a significant pathway in infectious disease transmission in both the industrialised and the developing world. Using over 90,000 private well water submission records representing approximately 30,000 unique well locations in south-eastern Ontario, Canada, a spatial analysis was performed in order to delineate clusters with elevated risk of E. coli contamination using 5 years of data (2008)(2009)(2010)(2011)(2012). Analyses were performed for all years independently and subsequently compared to each other. Numerous statistically significant clusters were identified and both geographic stability and variation over time were examined. Through the identification of spatial and temporal patterns, this study provides the basis for future investigations into the underlying causes of bacterial groundwater contamination, while identifying geographic regions that merit particular attention to public health interventions and improvement of water quality.
Many people living in rural areas rely on privately owned wells as their primary source of drinking water. These water sources are at risk for fecal contamination of human, wildlife, and livestock origin. While traditional bacteriological testing involves culture-based methods, microbial source tracking (MST) assays present an opportunity to additionally determine the source of fecal contamination. This study investigated the main host sources of contamination in private well water samples with high levels of Escherichia coli (E. coli), using MST with human and multi-species specific markers. Fecal contamination of human origin was detected in approximately 50% of samples, indicating that current contamination prevention strategies require reconsideration. The relationship between cattle density and fecal contamination of bovine origin was investigated using a Bovine Bacteroidales specific MST assay. Regional variations of microbial sources were examined, and may inform local primary prevention strategies. Additionally, in order to assess MST and E. coli quantitative real time polymerase chain reaction (qPCR) assays as indicators of fecal contamination, these were compared to E. coli culture methods. Variation in results was observed across all assay methods investigated, suggesting the most appropriate routine bacteriological testing methodology cannot be determined without comparison to a method that directly detects the presence of fecal contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.