Colchicine is a well-known compound with strong antiproliferative activity that has had limited use in chemotherapy because of its toxicity. In order to create more potent anticancer agents, a series of novel colchicine derivatives have been obtained by simultaneous modification at C7 (amides and sulfonamides) and at C10 (methylamino group) positions and characterized by spectroscopic methods. All the synthesized compounds have been tested in vitro to evaluate their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX and BALB/3T3 cell lines. Additionally, the activity of the studied compounds was investigated using computational methods involving molecular docking of the colchicine derivatives to β-tubulin. The majority of the obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin or cisplatin against tested cancer cell lines. Furthermore, molecular modeling studies of the obtained compounds revealed their possible binding modes into the colchicine binding site of tubulin.
Colchicine is a well-known anticancer compound showing antimitotic effect on cells. Its high cytotoxic activity against different cancer cell lines has been demonstrated many times. In this paper we report the syntheses and spectroscopic analyses of novel colchicine derivatives obtained by structural modifications at C7 (carbon-nitrogen single bond) and C10 (methylamino group) positions. All the obtained compounds have been tested in vitro to determine their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX, and BALB/3T3 cell lines. The majority of obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin and cisplatin against the tested cancerous cell lines. Additionally, most of the presented derivatives were able to overcome the resistance of LoVo/DX cells. Additionally, their mode of binding to β-tubulin was evaluated in silico. Molecular docking studies showed that apart from the initial amides 1 and 2, compound 14, which had the best antiproliferative activity (IC50 = 0.1–1.6 nM), stood out also in terms of its predicted binding energy and probably binds best into the active site of βI-tubulin isotype.
A series of 1,4-disubstituted 1,2,3-triazoles having 10-demethoxy-10-N-methylaminocolchicine core were designed and synthesized via the Cu(I)-catalyzed "click" reaction and screened for their in vitro cytotoxicity against four cancer cell lines (A549, MCF-7, LoVo, LoVo/DX) and one noncancerous cell line (BALB/3T3). Indexes of resistance (RI) and selectivity (SI) were also determined to assess the potential of the analogues to break drug resistance of the LoVo/DX cells and to verify their selectivity toward killing cancer cells over normal cells. The compounds with an ester or amide moiety in the fourth position of 1,2,3-triazole of 10-N-methylaminocolchicine turned out to have the greatest therapeutic potential (low IC 50 values and favorable SI values), much better than that of unmodified colchicine or doxorubicin and cisplatin. Thus, they make a valuable clue for the further search for a drug having a colchicine scaffold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.