Dipyrromethene metal complexes are fascinating molecules that have applications as light‐harvesting systems, luminophores, and laser dyes. Recently, it has been shown that structurally rigid bis(dipyrrinato) zinc(II) complexes exhibit high fluorescence with comparable quantum yields to those of boron dipyrromethenes or BODIPYs. Herein, eight new bis(dipyrrinato) ZnII complexes, obtained from symmetric and unsymmetrical functionalization of the dipyrromethene structure through a Knoevenagel reaction, are reported. It was possible not only to vary the maximum visible absorption from 490 to 630 nm, but also to enhance the emission quantum yield up to 66 %, which is extraordinarily high for homoleptic bis(dipyrrinato) zinc complexes. These results pave the way for designing highly luminescent bis(dipyrrinato) zinc complexes.
We report the photophysical properties of diarylethene‐based photoswitches (DAE) which were incorporated into the backbones of macrocyclic peptides of variable sizes (6, 10 and 14 amino acids: cDAE‐6, cDAE‐10, and cDAE‐14). The insertion leads to a consistent bathochromic shift in UV/Vis absorption bands, a considerable peptide‐size‐dependent fluorescence intensity increase (up to a factor of 1.7), and a drastically reduced photoisomerization efficiency leading to formation of the ring‐closed DAE fragment. The compounds were studied by time‐resolved photoinduced broadband absorption spectroscopy, revealing a ring closure reaction for the unconstrained DAE reference system and, to a lesser extent, for cyclic cDAE‐14. The smallest cyclic peptide cDAE‐6 does not undergo any photoisomerization process at all. Furthermore, the DAE fragment ring closure reaction in the reference system is concurrent with intersystem crossing that is complete within a few picoseconds. Further analysis showed dominant triplet absorption throughout the observed spectral window (350–700 nm) in all macrocyclic systems. As a consequence, ring closure is favored in the unconstrained system in contrast to the cyclic peptides. Our studies demonstrate the importance of understanding the population dynamics of DAE rotamers when designing efficiently photocontrollable diarylethene‐based peptidomimetics.
Photoexcitation of (neat) room temperature ionic liquids (RTILs) leads to the observation of transient species that are reminiscent of the composition of the RTILs themselves. In this minireview, we summarize state‐of‐the‐art in the understanding of the underlying elementary processes. By varying the anion or cation, one aim is to generally predict radiation‐induced chemistry and physics of RTILs. One major task is to address the fate of excess electrons (and holes) after photoexcitation, which implies an overview of various formation mechanisms considering structural and dynamical aspects. Therefore, transient studies on time scales from femtoseconds to microseconds can greatly help to elucidate the most relevant steps after photoexcitation. Sometimes, radiation may eventually result in destruction of the RTILs making photostability another important issue to be discussed. Finally, characteristic heterogeneities can be associated with specific physicochemical properties. Influencing these properties by adding conventional solvents, like water, can open a wide field of application, which is briefly summarized.
To mimic the charge separation in functional proteins we studied flavin‐modified peptides as models. They were synthesized as oligoprolines that typically form a polyproline type‐II helix, because this secondary structure supports the electron transfer properties. We placed the flavin as photoexcitable chromophore and electron acceptor at the N‐terminus. Tryptophans were placed as electron donors to direct the electron transfer over 0–3 intervening prolines. Spectroscopic studies revealed competitive photophysical pathways. The reference peptide without tryptophan shows dominant non‐specific ET dynamics, leading to an ion pair formation, whereas peptides with tryptophans have weak non‐specific ET and intensified directed electron transfer. By different excitation wavelengths, we can conclude that the corresponding ion pair state of flavin within the peptide environment has to be energetically located between the S1 and S4 states, whereas the directed electron transfer to tryptophan occurs directly from the S1 state. These photochemical results have fundamental significance for proteins with flavin as redoxactive cofactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.