Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human neoplasms with extremely poor prognosis and a low survival rate. Immunosuppressive cell populations, e.g. regulatory T cells (Treg), appear to be important in PDAC, contributing to patient's poor prognosis. Therefore, we investigated the PDAC microenvironment with a focus on conventional and regulatory T cells in view of their potential therapeutic importance. We found that tumors from the murine Panc02 orthotopic model of PDAC were infiltrated with high numbers of Treg. Remarkably, these cells exhibited the effector/memory phenotype, suggesting their enhanced suppressive activity and higher proliferation capacity. Although we observed a steady increase in transforming growth factor-b (TGF-b) levels in the tumors, treatment with a specific inhibitor of TGF-b receptor I kinase failed to abrogate Treg accumulation. A CCR4 antagonist did not affect Treg percentage in the tumor either. However, intense Treg cell division in the tumor microenvironment was demonstrated, suggesting local proliferation as a major mechanism of Treg accumulation in PDAC. Notably, this accumulation was reduced by low-dose gemcitabine administration, resulting in a modestly increased survival of PDAC mice. Our results provide an insight into mechanisms of immunosuppression in PDAC, suggesting an important role for proliferative expansion of effector/memory Treg. Low-dose gemcitabine therapy selectively depletes Treg, providing a basis for new modalities of PDAC therapy.Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human neoplasms having extremely poor prognosis with a 5-year survival rate of <1% and a median survival of 6 months. Even after surgical intervention, the 5-year survival rate is at best 15% without adjuvant therapy or 25% with adjuvant chemotherapy. 1 In contrast to other malignancies, pancreatic cancer is highly resistant to chemotherapy and targeted therapy. The molecular mechanisms that determine treatment resistance are poorly understood.
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest cancers in the world. PDAC cells activate tumor-specific immune responses but simultaneously trigger a strong immunosuppression. We showed that PDAC cells produce high amount of chronic inflammatory mediators and PDAC tumors build an immunosuppressive cytokine milieu, which correlates with tumor progression. We observed a low frequency of dendritic cells (DC) and a pronounced accumulation of macrophages and myeloid-derived suppressor cells (MDSC) in murine PDAC tumors. A strong accumulation of MDSC has also been demonstrated in the peripheral blood of resected PDAC patients. While DC and macrophages seem not to play a significant role in this PDAC model in the context of immunosuppression, MDSC are highly suppressive, and their accumulation is associated with an increase in intratumoral VEGF concentration during the PDAC progression. Application of the phosphodiesterase-5 inhibitor sildenafil led to a prolonged survival of PDACbearing female mice, which was due to the decrease in MDSC frequencies and in the systemic VEGF level. This led to a restoration of anticancer immune responses, manifested in the recovery of T lymphocyte functions and in an increase in the frequency of conventional CD4 C T cells in tumors and IFNg level in serum of PDAC-bearing mice. Thus, MDSC are strongly involved in the PDAC-associated immunosuppression and that their depletion could create new approaches for therapy of PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.