Summary Background Eighty percent of adolescents with severe obesity suffer from non‐alcoholic fatty liver disease (NAFLD). Non‐invasive prediction models have been tested in adults, however, they performed poorly in paediatric populations. Objective This study aimed to investigate novel biomarkers for NAFLD and to develop a score that predicts liver fat in youth with severe obesity. Methods From a population with a BMI >97th percentile aged 9‐19 years (n = 68), clinically thoroughly characterized including MRI‐derived proton density fat fraction (MRI‐PDFF), amino acids and acylcarnitines were measured by HPLC‐MS. Results In children with NAFLD, higher levels of plasma branched‐chain amino acids (BCAA) were determined. BCAAs correlated with MRI‐PDFF (R = 0.46, p < .01). We identified a linear regression model adjusted for age, sex and pubertal stage consisting of BCAAs, ALT, GGT, ferritin and insulin that predicted MRI‐PDFF (R = 0.75, p < .01). ROC analysis of this model revealed AUCs of 0.85, 0.85 and 0.92 for the detection of any, moderate and severe steatosis, respectively, thus markedly outperforming previously published scores. Conclusion BCAAs could be an important link between obesity and other metabolic pathways. A BCAA‐based metabolic score can predict steatosis grade in high‐risk children and adolescents and may provide a feasible alternative to sophisticated methods like MRI or biopsy in the future.
Background Obesity-associated chronic low-grade inflammation leads to dysregulation of central lipid and glucose metabolism pathways leading to metabolic disorders. MicroRNAs (miRNAs) are known to control regulators of metabolic homeostasis. We aimed to assess the relationship of circulating miRNAs with inflammatory modulators and metabolic disorders in pediatric obesity. Methods From a pediatric cohort with severe obesity (n = 109), clinically thoroughly characterized including diverse routine blood parameters, oral glucose tolerance test, and liver MRI, a panel of 16 circulating miRNAs was quantified using qRT-PCR. Additionally, markers of inflammation TNFα, IL1 receptor antagonist, procalcitonin, CRP, and IL-6 were measured. Results Markers of obesity-associated inflammation, TNFα, IL-1Ra, and procalcitonin, all significantly correlated with concentrations of miRNAs 122 and 192. Concentrations of these miRNAs negatively correlated with serum adiponectin and were among those strongly linked to parameters of dyslipidemia and liver function. Moreover, miRNA122 concentrations correlated with HOMA-IR. Several miRNA levels including miRNAs 34a, 93, 122, and 192 were statistically significantly differing between individuals with prediabetes, impaired glucose tolerance, metabolic syndrome, or nonalcoholic fatty liver disease compared to the respective controls. Additionally, miRNA 192 was significantly elevated in metabolically unhealthy obesity. Conclusions A miRNA pattern associated with obesity-associated inflammation and comorbidities may be used to distinguish metabolically healthy from unhealthy pediatric patients with obesity. Moreover, these changes in epigenetic regulation could potentially be involved in the etiology of obesity-linked metabolic disease in children and adolescents.
The obesity epidemic has contributed to an escalating prevalence of metabolic diseases in children. Overnutrition leads to increased tryptophan uptake and availability. An association between the induction of the tryptophan catabolic pathway via indoleamine 2,3-dioxygenase (IDO) activity and obesity-related inflammation has been observed. This study aimed to investigate the impact of pediatric obesity on tryptophan metabolism and the potential relationship with metabolic disease. In this prospective cohort study, plasma kynurenine, tryptophan, and serotonin levels were measured by ELISA, and IDO activity was estimated by calculating the kynurenine/tryptophan ratio in a clinically characterized population with severe obesity (BMI ≥ 97th percentile) aged 9 to 19 (n = 125). IDO activity and its product kynurenine correlated with BMI z-score and body fat mass, whereas concentrations of serotonin, the alternative tryptophan metabolite, negatively correlated with these measures of adiposity. Kynurenine and tryptophan, but not serotonin levels, were associated with disturbed glucose metabolism. Tryptophan concentrations negatively correlated with adiponectin and were significantly higher in prediabetes and metabolically unhealthy obesity. In conclusion, BMI and body fat mass were associated with increased tryptophan catabolism via the kynurenine pathway and decreased serotonin production in children and adolescents with severe obesity. The resulting elevated kynurenine levels may contribute to metabolic disease in obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.