We report on a novel bend sensor with high flexibility and elasticity based on Bragg grating structures in polymer optical fibers to detect bending for the measurement of movement. The concept is very simple and relies on the inscription of eccentrical Bragg gratings into multimode graded-index polymer optical fibers via contact exposure with a krypton fluoride excimer laser in the ultraviolet region and an optimized phase mask. Depending on the fiber deformation, the lattice constant of the inscribed Bragg grating is strained or compressed due to its position relative to the fiber core. This in turn results in a specific shift of the Bragg wavelength of up to 1.3 nm to the red or blue wavelength region, respectively, which is sufficiently large to be reliably detected. Therefore, as proof of principle, deformation along one axis can be observed with a single Bragg grating with a maximum sensitivity of up to 65 pm/m −1 . Moreover, multiple Bragg gratings inscribed into the same polymer optical fiber at different positions around the fiber axis allow to determine the shape deformation of the fiber relative to a reference frame with similar accuracy. Consequently, this technology could form the basis for new applications in the areas of medical diagnostics, robotics or augmented reality, which are lacking affordable sensor systems to date.
We present a novel bend sensor based on eccentric fibre Bragg gratings in multimode graded-index polymer optical fibres. Dependent on number, position and depth of the gratings, 1D and 3D bend measurements are demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.