The present document has been produced and adopted by the bodies identified above as authors. In accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the authors in the context of a grant agreement between the European Food Safety Authority and the authors. The present document is published complying with the transparency principle to which the Authority is subject. It cannot be considered as an output adopted by the Authority. The European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
The sentinel plantation concept consists of assessing the impact of exotic factors, such as pests and pathogens, on plants of interest by planting them out of their native range. This tool is a way to enhance knowledge for pest risk analysis (PRA) by guiding decisions on how quarantine organisms should be regulated and where to focus prevention and surveillance efforts for an early detection. In this study, the sentinel method was used in the case of research on Xylella fastidiosa, a plant pathogenic bacterium that has recently been found established in southern Europe, but whose potential impact and possible host range are still poorly documented in northern areas where the bacterium is not known to occur. To improve knowledge on the susceptibility of potential hosts of X. fastidiosa in northern Europe, a sentinel plantation of Prunus domestica cv. Opal, Quercus petraea and Salix alba was established in the X. fastidiosa-infected area of Majorca. In order to assess the circulation of the bacterium in the sentinel plot and around it, surveys of the local flora and insect vectors were carried out, as well as the planting of a network of rosemary "spy plants". Symptomatic monitoring and molecular analyses were performed on the sentinel plants for four years. During these years, X. fastidiosa was never detected in our sentinel plants most likely because of the low infectivity pressure recorded in the surroundings. This study underlines the complexity of conducting sentinel plantation assays combined with X. fastidiosa research, highlighting the need for long-term investigation and questioning the efficiency of the sentinel tool. However, this study is placed in perspective with other valuable sentinel plantations. It also highlights the complementarity of the tool and proposes elements to improve or reorient the implementation of future sentinel projects.
The discovery of several strains belonging to three subspecies of Xylella fastidiosa in Europe has triggered major attention to the potential spread up north of the bacteria. It is essential to assess the susceptibility of the previously unexposed European flora to this pathogen. Under biosafety facility, we evaluated the susceptibility of Salicaceae such as Populus tremula, Populus canescens, Salix alba and Salix caprea by mechanically inoculating the KLN59.3 GFP-labelled X. fastidiosa at 22 °C and at 28 °C. Bacterial movement and multiplication in plants were investigated by PCR, real-time PCR, confocal or scanning electron microscopy. Nine months post-inoculation, 100% of the plants tested positive for X. fastidiosa, with the exception of 57% for P. canescens under the 22 °C-growing conditions. Bacteria were detected up to 120 cm from the inoculation point for S. alba. They were detected in the roots of all species and were successfully isolated for S. alba and P. tremula. Estimates of average CFU/g of plant tissue per species ranged from 1.5E + 03 to 3.5E + 06, with the lowest figures for P. canescens and the highest for P. tremula together with high number of totally obstructed vessels observed by confocal microscopy. The possibility of insect transmission was also evaluated using an experimental set up based on Majorca Island. There, transmission by P. spumarius of both X. fastidiosa ST1 and ST81 was proven on S. alba. We thus demonstrated that indigenous European Salicaceae such as S. alba or P. tremula are new potential hosts for X. fastidiosa.
Xylella fastidiosaWells (1987) (Proteobacteria:Xanthomonadaceae) is a xylem pathogen bacterium transmitted by xylem feeder insects that causes several important plant diseases such as Pierce’s disease in grapes or leaf scorch in almond and olives trees. The bacterium was detected in the Balearic Islands in October 2016, including three subspecies:fastidiosa,multiplexandpauca. The major potential vectors described in the Balearics arePhilaenus spumariusL. andNeophilaenus campestrisFallen (1805). In order to interfere the life cycle of vectors, we tested the effect of mechanical control of the plant cover on the most vulnerable phases, such as nymphs and/or newly emerged adults. For this, we selected four organic orchards in Mallorca, three olive and one vineyard plots. Owners of each selected plot conducted mechanical control according to their common procedures and their own machinery, which in general included cut and tillage of the plant cover during March-April. Nymph abundance per surface (30 sampling points/treatment/orchard x 0,25 m2) was measured in each plot in a weekly basis before and after mechanical control. Our results indicated that either tillage and mowing decreased nymphal density ofX. fastidiosavectors in both types of crops. These results contribute to the integrated pest management of vectors by conducting feasible farm-based management of the regular plant cover.Abstract Figure
The Asian tiger mosquito Aedes albopictus (Skuse, 1894) is a highly invasive species widely distributed on the Spanish Mediterranean coast and the Balearic archipelago. Most studies involving this species in Spain have been focused on surveillance and control methods. However, micro-evolutionary studies for Ae. albopictus in Spain have been traditionally neglected. Morphological diversity could be the result of long-term evolutionary diversification in responses to selective pressures such as temperature, precipitation, food availability, predation, or competition that may influence flight activity, host-seeking, and blood-feeding behavior. Wing geometric morphometric have been used not only to study micro- and macro-evolution in mosquitoes but also in studies of population structuring and sexual dimorphism. Therefore, the main goal of this study was to investigate the wing shape patterns of Ae. albopictus populations to unveil sexual dimorphism that could provide information about their ecology and behavior. Mosquito eggs were collected using oviposition traps at the main campus of the University of the Balearic Islands (Palma de Mallorca, Spain) and reared under laboratory conditions. In order to study wing shape variation patterns in Ae. albopictus males and females, the left wing of each adult mosquito was removed and analyzed based on 18 landmarks. Our results indicated strong levels of sexual dimorphism between Ae. albopictus males and females. Furthermore, according to the cross-validated reclassification test, males were correctly distinguished from females with an accuracy of 84% and females from males 75%. We observed a significant sexual dimorphism in the wing shape patterns of Ae. albopictus when considering different seasonal patterns (spring vs. autumn). Our results suggested that selective pressures may affect males differently to females. Host-seeking, blood-feeding, and oviposition behavior of females may act as a major driver for wing shape sexual dimorphism. These results should be considered for the development of more effective and targeted mosquito control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.