Brazilian green and red propolis stand out as commercial products for different medical applications. In this article, we report the antimicrobial activities of the hydroalcoholic extracts of green (EGP) and red (ERP) propolis, as well as guttiferone E plus xanthochymol (8) and oblongifolin B (9) from red propolis, against multidrug‐resistant bacteria (MDRB). We undertook the minimal inhibitory (MIC) and bactericidal (MBC) concentrations, inhibition of biofilm formation (MICB50), catalase, coagulase, DNase, lipase, and hemolysin assays, along with molecular docking simulations. ERP was more effective by displaying MIC and MBC values <100 μg mL−1. Compounds 8 and 9 displayed the lowest MIC values (0.98 to 31.25 μg mL−1) against all tested Gram‐positive MDRB. They also inhibited the biofilm formation of S. aureus (ATCC 43300 and clinical isolate) and S. epidermidis (ATCC 14990 and clinical isolate), with MICB50 values between 1.56 and 6.25 μg mL−1. The molecular docking results indicated that 8 and 9 might interact with the catalase's amino acids. Compounds 8 and 9 have great antimicrobial potential.
Considering our previous findings on the remarkable activity exhibited by cobalt(III) with 2-acetylpyridine-N(4)-R-thiosemicarbazone (Hatc-R) compounds against Mycobacterium tuberculosis, the present study aimed to explored new structure features of the complexes of the type [Co(atc--R)2]Cl, where R = methyl (Me, 1) or phenyl (Ph, 2) (13C NMR, high-resolution mass spectrometry, LC–MS/MS, fragmentation study) together with its antibacterial and antiviral biological activities. The minimal inhibitory and minimal bactericidal concentrations (MIC and MBC) were determined, as well as the antiviral potential of the complexes on chikungunya virus (CHIKV) infection in vitro and cell viability. [Co(atc-Ph)2]Cl revealed promising MIC and MBC values which ranged from 0.39 to 0.78 µg/mL in two strains tested and presented high potential against CHIKV by reducing viral replication by up to 80%. The results showed that the biological activity is strongly influenced by the peripheral substituent groups at the N(4) position of the atc-R1− ligands. In addition, molecular docking analysis was performed. The relative binding energy of the docked compound with five bacteria strains was found in the range of −3.45 and −9.55 kcal/mol. Thus, this work highlights the good potential of cobalt(III) complexes and provide support for future studies on this molecule aiming at its antibacterial and antiviral therapeutic application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.