Two-dimensional finite element simulations of electrokinetic flow in a microchannel T-junction of a fluid with a Carreau-type nonlinear viscosity are presented. The motion of the electrical double layer at the channel walls is approximated by velocity wall slip boundary conditions. The fluid experiences a range of shear rates as it turns the corner, and the flow field is shown to be sensitive to the non-Newtonian characteristics of the Carreau model. A one-to-one mapping between the Carreau parameters and the end wall pressure is demonstrated through statistical analysis of the pressure profile for a broad range of physical and operating parameters. Such a mapping allows the determination of the Carreau parameters of an unknown fluid if the end wall pressure profile is known; thus a highly efficient viscometric device may be constructed. A graphical technique to show that the inverse problem is well posed is shown, and a method for solving the inverse problem is presented. The challenges that must be overcome before a practical device can be constructed are discussed.
Internal gravity waves are frequently observed in stably stratified regions of the atmospheric boundary layer. In order to determine the statistical influence of such waves on the dynamics of the boundary layer it is necessary to compile information concerning properties of the waves such as frequency of occurrence, propagation, and spectral characteristics. Gravity wave climatologies have been compiled from relatively few locations. In this paper a climatological study of gravity waves, in the period range 1-20 min, propagating in the stably stratified atmospheric boundary layer overlying an Antarctic ice shelf is presented. An extensive set of boundary layer measurements were compiled throughout 1991. Surface pressure fluctuations were recorded from a spatial array of six sensitive microbarographs. Wind and temperature records from an instrumented mast were also available. A beam-steering technique has been used to determine wave parameters from the surface pressure data. The microbarographs detected the presence of internal gravity waves throughout the observational campaign. Rootmean-square pressure values were typically in the region 16-40 b, but a significant number of isolated events with amplitudes of up to 180 b were also found. Wave properties have been studied in conjunction with the mean wind and temperature profiles in the boundary layer. It was found that most of the wave activity did not originate locally, but from shear layers aloft, or, more commonly, from the katabatic flow regime where the ice shelf joins the Antarctic continent. * Current affiliation:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.