Context. Waves are ubiquitous in the solar corona and there are indications that they are excited by photospheric p-modes. However, it is unclear how p-modes in coronal loops are converted to sausage modes and transverse (kink) modes, which are observed in the corona. Aims. We aim to investigate how those wave modes are excited in the lower corona by photospheric acoustic waves. Methods. We built 3D magnetohydrostatic loop systems with multiple inclinations spanning from the photosphere to the lower corona. We then simulated these atmospheres with the MANCHA code, in which we perturb the equilibrium with a p-mode driver at the bottom of the domain. By splitting the velocity perturbation into components longitudinal, normal, and azimuthal to the magnetic flux surfaces we can study wave behavior. Results. In vertical flux tubes, we find that deformed fast sausage surface waves and slow sausage body waves are excited. In inclined flux tubes fast kink surface waves, slow sausage body waves, and either a fast sausage surface wave or a plane wave are excited. In addition, we calculate a wave conversion factor (0 ≤ C ≤ 1) from acoustic to magnetic wave behavior by taking the ratio of the mean magnetic energy flux to the sum of the mean magnetic and acoustic energy flux and compare it to a commonly used theoretical conversion factor. We find that between magnetic field inclinations of 10 • to 30 • those two methods lie within 40%. For smaller inclinations the absolute deviation is smaller than 0.1.
The suitability of solar pores as magnetic wave guides has been a key topic of discussion in recent years. Here, we present observational evidence of propagating magnetohydrodynamic wave activity in a group of five photospheric solar pores. Employing data obtained by the Facility Infrared Spectropolarimeter at the Dunn Solar Telescope, oscillations with periods of the order of 5 min were detected at varying atmospheric heights by examining Si ɪ 10827 Å line bisector velocities. Spectropolarimetric inversions, coupled with the spatially resolved root mean square bisector velocities, allowed the wave energy fluxes to be estimated as a function of atmospheric height for each pore. We find propagating magnetoacoustic sausage mode waves with energy fluxes on the order of 30 kW m −2 at an atmospheric height of 100 km, dropping to approximately 2 kW m −2 at an atmospheric height of around 500 km. The cross-sectional structuring of the energy fluxes reveals the presence of both body- and surface-mode sausage waves. Examination of the energy flux decay with atmospheric height provides an estimate of the damping length, found to have an average value across all five pores of L d ≈ 268 km, similar to the photospheric density scale height. We find the damping lengths are longer for body mode waves, suggesting that surface mode sausage oscillations are able to more readily dissipate their embedded wave energies. This work verifies the suitability of solar pores to act as efficient conduits when guiding magnetoacoustic wave energy upwards into the outer solar atmosphere. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’.
Context. Solar magnetic pores are, due to their concentrated magnetic fields, suitable guides for magnetoacoustic waves. Recent observations have shown that propagating energy flux in pores is subject to strong damping with height; however, the reason is still unclear. Aims. We investigate possible damping mechanisms numerically to explain the observations. Methods. We performed 2D numerical magnetohydrodynamic (MHD) simulations, starting from an equilibrium model of a single pore inspired by the observed properties. Energy was inserted into the bottom of the domain via different vertical drivers with a period of 30 s. Simulations were performed with both ideal MHD and non-ideal effects. Results. While the analysis of the energy flux for ideal and non-ideal MHD simulations with a plane driver cannot reproduce the observed damping, the numerically predicted damping for a localized driver closely corresponds with the observations. The strong damping in simulations with localized driver was caused by two geometric effects, geometric spreading due to diverging field lines and lateral wave leakage.
Acoustic waves excited in the photosphere and below might play an integral part in the heating of the solar chromosphere and corona. However, it is yet not fully clear how much of the initially acoustic wave flux reaches the corona and in what form. We investigate the wave propagation, damping, transmission, and conversion in the lower layers of the solar atmosphere using 3D numerical MHD simulations. A model of a gravitationally stratified expanding straight coronal loop, stretching from photosphere to photosphere, is perturbed at one footpoint by an acoustic driver with a period of 370 s. For this period, acoustic cutoff regions are present below the transition region (TR). About 2% of the initial energy from the driver reaches the corona. The shape of the cutoff regions and the height of the TR show a highly dynamic behavior. Taking only the driven waves into account, the waves have a propagating nature below and above the cutoff region, but are standing and evanescent within the cutoff region. Studying the driven waves together with the background motions in the model reveals standing waves between the cutoff region and the TR. These standing waves cause an oscillation of the TR height. In addition, fast or leaky sausage body-like waves might have been excited close to the base of the loop. These waves then possibly convert to fast or leaky sausage surface-like waves at the top of the main cutoff region, followed by a conversion to slow sausage body-like waves around the TR.
Context. Transverse oscillations are ubiquitously observed in the solar corona, both in coronal loops and in open magnetic flux tubes. Numerical simulations suggest that their dissipation could heat coronal loops, thus counterbalancing radiative losses. These models rely on a continuous driver at the footpoint of the loops. However, analytical works predict that transverse waves are subject to a cutoff in the transition region. It is thus unclear whether they can reach the corona and indeed heat coronal loops. Aims. Our aims are to determine how the cutoff of kink waves affects their propagation into the corona and to characterize the variation of the cutoff frequency with altitude. Methods. Using 3D magnetohydrodynamic simulations, we modelled the propagation of kink waves in a magnetic flux tube, embedded in a realistic atmosphere with thermal conduction, which starts in the chromosphere and extends into the corona. We drove kink waves at four different frequencies and determined whether they experienced a cutoff. We then calculated the altitude at which the waves were cut off and compared it to the prediction of several analytical models. Results. We show that kink waves indeed experience a cutoff in the transition region, and we identified the analytical model that gives the best predictions. In addition, we show that waves with periods shorter than approximately 500 s can still reach the corona by tunnelling through the transition region with little to no attenuation of their amplitude. This means that such waves can still propagate from the footpoints of loop and result in heating in the corona.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.