The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discslarge/ZO-1 homology (PDZ) binding motif, but requires a ∼120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme-substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump.phospholemman | sodium pump | palmitoylation | DHHC | ion transport P rotein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol via a thioester bond, is catalyzed by Asp-His-His-Cys motif-containing palmitoyl acyltransferases (DHHC-PATs); there are 23 human isoforms (1). These zinc-finger-containing enzymes typically have four transmembrane (TM) domains, with a conserved ∼50 amino acid cysteine-rich cytosolic core located between TM2 and -3, which contains a conserved DHHC motif, the active site. In contrast, the intracellular amino and carboxyl termini are poorly conserved, and likely contribute to DHHC isoform substrate selectivity (1). DHHC-PATs are expressed throughout the secretory pathway, but DHHC5 is widely recognized as one of very few cell-surfacelocalized PATs (2, 3). The final four amino acids of DHHC5 form a canonical class II PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, which interacts with postsynaptic density protein 95 (PSD-95) (2), although PSD-95 is not itself a DHHC5 substrate.An appreciation is now growing that protein palmitoylation turns over rapidly (in minutes) for certain proteins (4-8). For example, dynamic surface membrane protein palmitoylation by DHHC5 underlies a novel form of endocytosis, massive endocytosis (MEND), in which up to 70% of the cell surface membrane is internalized (7, 8). Calci...
Aims/hypothesisHypoglycaemia is a major barrier to good glucose control in type 1 diabetes. Frequent hypoglycaemic episodes impair awareness of subsequent hypoglycaemic bouts. Neural changes underpinning awareness of hypoglycaemia are poorly defined and molecular mechanisms by which glial cells contribute to hypoglycaemia sensing and glucose counterregulation require further investigation. The aim of the current study was to examine whether, and by what mechanism, human primary astrocyte (HPA) function was altered by acute and recurrent low glucose (RLG).MethodsTo test whether glia, specifically astrocytes, could detect changes in glucose, we utilised HPA and U373 astrocytoma cells and exposed them to RLG in vitro. This allowed measurement, with high specificity and sensitivity, of RLG-associated changes in cellular metabolism. We examined changes in protein phosphorylation/expression using western blotting. Metabolic function was assessed using a Seahorse extracellular flux analyser. Immunofluorescent imaging was used to examine cell morphology and enzymatic assays were used to measure lactate release, glycogen content, intracellular ATP and nucleotide ratios.ResultsAMP-activated protein kinase (AMPK) was activated over a pathophysiologically relevant glucose concentration range. RLG produced an increased dependency on fatty acid oxidation for basal mitochondrial metabolism and exhibited hallmarks of mitochondrial stress, including increased proton leak and reduced coupling efficiency. Relative to glucose availability, lactate release increased during low glucose but this was not modified by RLG. Basal glucose uptake was not modified by RLG and glycogen levels were similar in control and RLG-treated cells. Mitochondrial adaptations to RLG were partially recovered by maintaining euglycaemic levels of glucose following RLG exposure.Conclusions/interpretationTaken together, these data indicate that HPA mitochondria are altered following RLG, with a metabolic switch towards increased fatty acid oxidation, suggesting glial adaptations to RLG involve altered mitochondrial metabolism that could contribute to defective glucose counterregulation to hypoglycaemia in diabetes.Electronic supplementary materialThe online version of this article (10.1007/s00125-018-4744-6) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
Aim:To test the hypothesis that, given the role of AMP-activated protein kinase (AMPK) in regulating intracellular ATP levels, AMPK may alter ATP release from astrocytes, the main sources of extracellular ATP (eATP) within the brain. Materials and Methods:Measurements of ATP release were made from human U373 astrocytoma cells, primary mouse hypothalamic (HTAS) and cortical astrocytes (CRTAS) and wild-type and AMPK α1/α2 null mouse embryonic fibroblasts (MEFs). Cells were treated with drugs known to modulate AMPK activity: A-769662, AICAR and metformin, for up to 3 hours. Intracellular calcium was measured using Fluo4 and Fura-2 calcium-sensitive fluorescent dyes. Results:In U373 cells, A-769662 (100 μM) increased AMPK phosphorylation, whereas AICAR and metformin (1 mM) induced a modest increase or had no effect, respectively. Only A-769662 increased eATP levels, and this was partially blocked by AMPK inhibitor Compound C.A-769662-induced increases in eATP were preserved in AMPK α1/α2 null MEF cells. A-769662 increased intracellular calcium in U373, HTAS and CRTAS cells and chelation of intracellular calcium using BAPTA-AM reduced A-769662-induced eATP levels. A-769662 also increased ATP release from a number of other central and peripheral endocrine cell types. Conclusions:AMPK is required to maintain basal eATP levels but is not required for A-769662-induced increases in eATP. A-769662 (>50 μM) enhanced intracellular calcium levels leading to ATP release in an AMPK and purinergic receptor independent pathway. K E Y W O R D SA-769662, AMPK, ATP, BV-2, C2C12, cortical astrocytes, GT1-7, H4IIE, hypothalamic astrocytes, INS-1, intracellular calcium, SH-SY5Y, U373
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.