Furan has recently received attention as a possibly hazardous compound occurring in certain thermally processed foods. Previous model studies have revealed three main precursor systems producing furan upon thermal treatment, i.e., ascorbic acid, Maillard precursors, and polyunsaturated lipids. We employed proton transfer reaction mass spectrometry (PTR-MS) as an on-line monitoring technique to study furan formation. Unambiguous identification and quantitation in the headspace was achieved by PTR-MS/gas chromatography-mass spectrometry coupling. Ascorbic acid showed the highest potential to generate furan, followed by glyceryl trilinolenate. Some of the reaction samples generated methylfuran as well, such as Maillard systems containing alanine and threonine as well as lipids based on linolenic acid. The furan yields from ascorbic acid were lowered in an oxygen-free atmosphere (30%) or in the presence of reducing agents (e.g., sulfite, 60%), indicating the important role of oxidation steps in the furan formation pathway. Furthermore, already simple binary mixtures of ascorbic acid and amino acids, sugars, or lipids reduced furan by 50-95%. These data suggest that more complex reaction systems result in much lower furan amounts as compared to the individual precursors, most likely due to competing reaction pathways.
Photoacoustic imaging has been shown to provide high-resolution images of genetically labelled cells at depths that are inaccessible to optical microscopy. While the detection of genetic reporters, such as fluorescent proteins and pigments, has been demonstrated using multiwavelength imaging and spectral unmixing, these approaches remain challenging due to their large computational scale. In this study we report a method based on a reversibly photoswitchable phytochrome-based reporter protein (AGP1) and dual-wavelength interleaved image acquisition for obtaining difference images with unambiguous reporter-specific contrast. Detailed, full 3D images of tumours formed of cells lentivirally transduced to express AGP1 were acquired in vivo in deep tissue in a longitudinal study. This method represents a powerful new approach to studying cellular and genetic processes which, due to its experimental simplicity, can be implemented in a wide range of existing photoacoustic imaging platforms.
A pump-probe technique for the detection of fluorophores in tomographic PA images is introduced. It is based on inducing stimulated emission in fluorescent molecules, which in turn modulates the amount of thermalized energy, and hence the PA signal amplitude. A theoretical model of the PA signal generation in fluorophores is presented and experimentally validated on cuvette measurements made in solutions of Rhodamine 6G, a fluorophore of known optical and molecular properties. The application of this technique to deep tissue tomographic PA imaging is demonstrated by determining the spatial distribution of a near-infrared fluorophore in a tissue phantom. 1983). 32. E. Zhang, J. Laufer, and P. Beard, "Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues," Appl.
In the production plant of an antibiotic substance, a new fluidized-bed drier has been installed. For online process control of the drying progress and determination of the ideal drying end point, a continuous near-infrared spectroscopic (NIRS) measuring setup was implemented to rapidly and simultaneously gain all essential product information. A bypass system outside the drier combined with a robust process probe proved to provide the best sampling system geometry. The spectrometer was equipped with an additional laboratory probe for complementary offline analysis. Multivariate calibrations for product assay, water content, and residual solvent were calculated, optimized, and compared for the two probes. The final root-mean-square error of cross validation (RMSECV) for the process probe could be reduced to 0.81% for the product assay, 0.25% for water, and 0.06% for acetone. The laboratory-probe prediction values show good agreement with reference data during the testing period. The calibrations of the process probe were checked by comparing its predictions to those of the validated laboratory probe. The monitoring system could be automated to a large extent, and product quality could be improved considerably. The established technology is of high importance for the pharmaceutical industry carrying out high-throughput routine analysis because of its advantages in terms of of time and cost reductions.
Photoacoustic (PA) imaging using pump–probe excitation has been shown to allow the detection and visualization of fluorescent contrast agents. The technique relies upon inducing stimulated emission using pump and probe pulses at excitation wavelengths that correspond to the absorption and fluorescence spectra. By changing the time delay between the pulses, the excited state lifetime of the fluorophore is modulated to vary the amount of thermalized energy, and hence PA signal amplitude, to provide fluorophore-specific PA contrast. In this study, this approach was extended to the detection of differences in the excited state lifetime of fluorophores. PA waveforms were measured in solutions of a near-infrared fluorophore using simultaneous and time-delayed pump–probe excitation. The lifetime of the fluorophore solutions was varied by using different solvents and quencher concentrations. By calculating difference signals and by plotting their amplitude as a function of pump–probe time delay, a correlation with the excited state lifetime of the fluorophore was observed. The results agreed with the output of a forward model of the PA signal generation in fluorophores. The application of this method to tomographic PA imaging of differences in the excited state lifetime was demonstrated in tissue phantom experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.