Experiences during the lifetime of an animal have been proposed to have consequences for subsequent generations. Although it is unclear how such intergenerational transfer of information occurs, RNAs found extracellularly in animals are candidate molecules that can transfer gene-specific regulatory information from one generation to the next because they can enter cells and regulate gene expression. In support of this idea, when double-stranded RNA (dsRNA) is introduced into some animals, the dsRNA can silence genes of matching sequence and the silencing can persist in progeny. Such persistent gene silencing is thought to result from sequencespecific interaction of the RNA within parents to generate chromatin modifications, DNA methylation, and/or secondary RNAs, which are then inherited by progeny. Here, we show that dsRNA can be directly transferred between generations in the worm Caenorhabditis elegans. Intergenerational transfer of dsRNA occurs even in animals that lack any DNA of matching sequence, and dsRNA that reaches progeny can spread between cells to cause gene silencing. Surprisingly, extracellular dsRNA can also reach progeny without entry into the cytosol, presumably within intracellular vesicles. Fluorescently labeled dsRNA is imported from extracellular space into oocytes along with yolk and accumulates in punctate structures within embryos. Subsequent entry into the cytosol of early embryos causes gene silencing in progeny. These results demonstrate the transport of extracellular RNA from one generation to the next to regulate gene expression in an animal and thus suggest a mechanism for the transmission of experience-dependent effects between generations.circulating RNA | parental RNAi | epigenetics | transgenerational inheritance | endocytosis
RNAs in circulation carry sequence-specific regulatory information between cells in animal, plant, and host-pathogen systems. Double-stranded RNA (dsRNA) delivered into the extracellular space of the nematode C. elegans accumulates within the germline and reaches progeny. Here we provide evidence for spatial, temporal, and substrate specificity in the transport of dsRNA from parental circulation to progeny. Temporary loss of dsRNA transport resulted in the persistent accumulation of mRNA from a germline gene. The expression of this gene varied among siblings and even between gonad arms within one animal. Perturbing RNA regulation of the gene created new epigenetic states that lasted for many generations. Thus, one role for the transport of dsRNA into the germline in every generation is to limit heritable changes in gene expression.One Sentence SummaryRNA from parental circulation reduces heritable changes in gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.