Abstract“Western diet” containing high concentrations of sugar and fat consumed during pregnancy contributes to development of obesity and diabetes type 2 in offspring. To mimic effects of this diet in animals, a cafeteria (CAF) diet is used. We hypothesized that CAF diet given to rats before, and during pregnancy and lactation differently influences fat content, metabolic and inflammation profiles in offspring. Females were exposed to CAF or control diets before pregnancy, during pregnancy and lactation. At postnatal day 25 (PND 25), body composition, fat contents were measured, and blood was collected for assessment of metabolic and inflammation profiles. We have found that CAF diet lead to sex-specific alterations in offspring. At PND25, CAF offspring had: (1) higher percentage of fat content, and were lighter; (2) sex-specific differences in levels of glucose; (3) higher levels of interleukin 6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor (TNF-α); (4) sex-specific differences in concentration of IL-6 and TNF-α, with an increase in CAF females; (5) higher level of IL-10 in both sexes, with a more pronounced increase in females. We concluded that maternal CAF diet affects fat content, metabolic profiles, and inflammation parameters in offspring. Above effects are sex-specific, with female offspring being more susceptible to the diet.
Acquisition of reproductive maturity involves one of the most important series of developmental events in an organism's life. The beginning of adolescence is marked by the onset of puberty. Puberty is the continuum of physical changes through which an infantile body matures into an adult capable of reproduction. This is a period of increased brain plasticity, where processes of re-wiring, neuronal proliferation and pruning are enhanced. The initiation of mammalian puberty requires an increased pulsatile release of gonadotropin-releasing hormone from the hypothalamus. Puberty is regulated by neuroendocrine, genetic and epigenetic factors. The maturation and function of the reproductive axis are highly sensitive to the energy status of the organism and sophisticated mechanisms exist to inhibit the axis in unfavorable energetic or metabolic conditions.In this review, we will focus on the impact of alcohol and obesity on reproductive outcomes, with emphasis on their effects on the timing of puberty. In the case of obesity, conflictive data are found, and while in females the association of overnutrition with advanced onset of puberty is consistent, in males, discrepant results have been reported. Concerning alcohol exposure, compelling evidence has documented a delay in the onset of puberty. We will present here data from both clinical studies and research involving preclinical models, which do not only delineate the impact of these conditions on the timing of puberty and potential underlying mechanisms, but that may help to define better strategies for the rational management of puberty disorders, especially of metabolic origin.
The prenatal period, during which a fully formed newborn capable of surviving outside its mother’s body is built from a single cell, is critical for human development. It is also the time when the foetus is particularly vulnerable to environmental factors, which may modulate the course of its development. Both epidemiological and animal studies have shown that foetal programming of physiological systems may alter the growth and function of organs and lead to pathology in adulthood. Nutrition is a particularly important environmental factor for the pregnant mother as it affects the condition of offspring. Numerous studies have shown that an unbalanced maternal metabolic status (under- or overnutrition) may cause long-lasting physiological and behavioural alterations, resulting in metabolic disorders, such as obesity and type 2 diabetes (T2DM). Various diets are used in laboratory settings in order to induce maternal obesity and metabolic disorders, and to alter the offspring development. The most popular models are: high-fat, high-sugar, high-fat-high-sugar, and cafeteria diets. Maternal undernutrition models are also used, which results in metabolic problems in offspring. Similarly to animal data, human studies have shown the influence of mothers’ diets on the development of children. There is a strong link between the maternal diet and the birth weight, metabolic state, changes in the cardiovascular and central nervous system of the offspring. The mechanisms linking impaired foetal development and adult diseases remain under discussion. Epigenetic mechanisms are believed to play a major role in prenatal programming. Additionally, sexually dimorphic effects on offspring are observed. Therefore, further research on both sexes is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.