Summary Broadly neutralizing monoclonal antibodies protect against HIV-1 infection in animal models, suggesting that a vaccine that elicits them in humans would be effective. However, it has not yet been possible to elicit adequate serologic responses by vaccination. To activate B-cells expressing precursors of broadly neutralizing antibodies within polyclonal repertoires, we developed a new immunogen, RC1, which facilitates recognition of the V3-glycan patch on HIV-1 envelope while concealing non-conserved immunodominant regions by addition of glycans and/or multimerization on virus-like particles. Mouse, rabbit and rhesus macaque immunizations with RC1 elicited serologic responses targeting the V3-glycan patch. Antibody cloning and cryo-electron microscopy structures of antibody-envelope complexes confirmed that RC1 immunization expands clones of B-cells carrying anti-V3-glycan patch antibodies that resemble precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable priming immunogen for sequential vaccination strategies to elicit V3-glycan antibodies in the context of polyclonal repertoires.
Summary The germinal center is a dynamic microenvironment wherein B cells expressing high affinity antibody variants produced by somatic hypermutation are selected for clonal expansion by limiting numbers of T follicular helper cells 1 , 2 . Although much is known about the mechanisms that control B cell selection in the germinal center, far less is understood about the clonal behavior of the T follicular helper cells that regulate this process. Here we report on the dynamic behavior of T follicular helper cell clones during the germinal center reaction. We find that like germinal center B cells, T follicular helper cells undergo antigen dependent selection throughout the germinal center reaction resulting in differential proliferative expansion and contraction. Increasing the amount of antigen presented in the germinal center leads to increased T follicular helper cell division. Competition between T follicular helper cell clones is mediated by T cell receptor affinity for peptide-MHC ligand. T cells expanding preferentially in the germinal center show increased expression of genes downstream of the T cell receptor, genes required for metabolic reprogramming, cell division and cytokine production. These dynamic changes lead to dramatic remodeling of the functional T follicular helper cell repertoire during the germinal center reaction.
SummaryCD4+ T cells develop distinct and often contrasting helper, regulatory, or cytotoxic activities. Typically a property of CD8+ T cells, granzyme-mediated cytotoxic T cell (CTL) potential is also exerted by CD4+ T cells. However, the conditions that induce CD4+ CTLs are not entirely understood. Using single-cell transcriptional profiling, we uncover a unique signature of Granzyme B (GzmB)+ CD4+ CTLs, which distinguishes them from other CD4+ T helper (Th) cells, including Th1 cells, and strongly contrasts with the follicular helper T (Tfh) cell signature. The balance between CD4+ CTL and Tfh differentiation heavily depends on the class of infecting virus and is jointly regulated by the Tfh-related transcription factors Bcl6 and Tcf7 (encoding TCF-1) and by the expression of the inhibitory receptors PD-1 and LAG3. This unique profile of CD4+ CTLs offers targets for their study, and its antagonism by the Tfh program separates CD4+ T cells with either helper or killer functions.
Antigen receptor diversity underpins adaptive immunity by providing the ground for clonal selection of lymphocytes with the appropriate antigen reactivity. Current models attribute T cell clonal selection during the immune response to T-cell receptor (TCR) affinity for either foreign or self peptides. Here, we report that clonal selection of CD4+ T cells is also extrinsically regulated by B cells. In response to viral infection, the antigen-specific TCR repertoire is progressively diversified by staggered clonotypic expansion, according to functional avidity, which correlates with self-reactivity. Clonal expansion of lower-avidity T-cell clonotypes depends on availability of MHC II-expressing B cells, in turn influenced by B-cell activation. B cells clonotypically diversify the CD4+ T-cell response also to vaccination or tumour challenge, revealing a common effect.
Mouse models have been instrumental in establishing fundamental principles of cancer initiation and progression and continue to be invaluable in the discovery and further development of cancer therapies. Nevertheless, important aspects of human disease are imperfectly approximated in mouse models, notably the involvement of endogenous retroviruses (ERVs). Replication-defective ERVs, present in both humans and mice, may affect tumor development and antitumor immunity through mechanisms not involving infection. Here, we revealed an adverse effect of murine ERVs with restored infectivity on the behavior of mouse cancer models. In contrast to human cancer, where infectious ERVs have never been detected, we found that ERV infectivity was frequently restored in transplantable, as well as genetic, mouse cancer models. Such replication-competent, ERV-derived retroviruses were responsible for unusually high expression of retroviral nucleic acids and proteins in mouse cancers.Infectious ERV-derived retroviruses produced by mouse cancer cells could directly infect tumor-infiltrating host immune cells and fundamentally modified the host's immune defenses to cancer, as well as the outcome of immunotherapy. Therefore, infectious retroviruses, variably arising in mouse cancer models, but not in human cancer, have the potential to confound many immunological studies and should be considered as a variable, if not altogether avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.