Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host–guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation.
We show that by judicious choice of substituents at the 2- and 7-positions of pyrene, the frontier orbital order of pyrene can be modified, giving enhanced control over the nature and properties of the photoexcited states and the redox potentials. Specifically, we introduced a julolidine-like moiety and Bmes (mes=2,4,6-Me C H ) as very strong donor (D) and acceptor (A), respectively, giving 2,7-D-π-D- and unsymmetric 2,7-D-π-A-pyrene derivatives, in which the donor destabilizes the HOMO-1 and the acceptor stabilizes the LUMO+1 of the pyrene core. Consequently, for 2,7-substituted pyrene derivatives, unusual properties are obtained. For example, very large bathochromic shifts were observed for all of our compounds, and unprecedented green light emission occurs for the D/D system. In addition, very high radiative rate constants in solution and in the solid state were recorded for the D-π-D- and D-π-A-substituted compounds. All compounds show reversible one-electron oxidations, and Jul Pyr exhibits a second oxidation, with the largest potential splitting (ΔE=440 mV) thus far reported for 2,7-substituted pyrenes. Spectroelectrochemical measurements confirm an unexpectedly strong coupling between the 2,7-substituents in our pyrene derivatives.
Tetra-substitutedortho-perylenes bearing four strong Ar2N π-donors or Ar2B π-acceptors enable four reversible oxidations or four reductions.
To understand the regulation of the genome, it is necessary to understand its three-dimensional organization in the nucleus. We investigated the positioning of eight gene loci on four different chromosomes, including the β-globin gene, in mouse embryonic stem cells and in in vitro differentiated macrophages by fluorescence in situ hybridization on structurally preserved nuclei, confocal microscopy, and 3D quantitative image analysis. We found that gene loci on the same chromosome can significantly differ from each other and from their chromosome territory in their average radial nuclear position. Radial distribution of a given gene locus can change significantly between cell types, excluding the possibility that positioning is determined solely by the DNA sequence. For the set of investigated gene loci, we found no relationship between radial distribution and local gene density, as it was described for human cell nuclei. We did find, however, correlation with other genomic properties such as GC content and certain repetitive elements such as long terminal repeats or long interspersed nuclear elements. Our results suggest that gene density itself is not a driving force in nuclear positioning. Instead, we propose that other genomic properties play a role in determining nuclear chromatin distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.