Accurate estimation of the climate sensitivity requires a better understanding of the nexus between polar marine ecosystem responses to warming, changes in sea ice extent, and emissions of marine biogenic aerosol (MBA). Sea ice brine channels contain very high concentrations of MBA precursors that, once ventilated, have the potential to alter cloud microphysical properties, such as cloud droplet number, and the regional radiative energy balance. In contrast to temperate latitudes, where the pelagic phytoplankton are major sources of MBAs, the seasonal sea ice dynamic plays a key role in determining MBA concentration in both the Arctic and Antarctic. We review the current knowledge of MBA sources and the link between ice melt and emissions of aerosol precursors in the polar oceans. We illustrate the processes by examining decadal-scale time series in various satellite-derived parameters such as aerosol optical depth (AOD), sea ice extent, and phytoplankton biomass in the sea ice zones of both hemispheres. The sharpest gradients in aerosol indicators occur during the spring period of ice melt. In sea ice–covered waters, the peak in AOD occurs well before the annual maximum in biomass in both hemispheres. The results provide strong evidence that suggests seasonal changes in sea ice and ocean biology are key drivers of the polar aerosol cycle. The positive trend in annual-mean Antarctic sea ice extent is now almost one-third of the magnitude of the annual-mean decrease in Arctic sea ice, suggesting the potential for different patterns of aerosol emissions in the future.
The effect of recreational SCUBA diving on coral reefs is likely secondary to many of the commonly cited stressors that threaten the long-term survival of coral reefs, such as rising temperatures. However, recreational SCUBA diving has had documented effects on various benthic organisms. Most research on the effect of SCUBA divers has focused on broken and abraded benthic organisms or the rate at which divers contact the benthos. We tested for differences in the structural complexity and benthic assemblage between pairs of heavily and lightly trafficked dive sites in Bonaire, a popular Carribbean diving destination. There was roughly 10 % less structural complexity in areas of heavy traffic. This is alarming given that the structural complexity of shallow reefs in Bonaire is substantially lower than in the 1970s. Different functional groups of benthic organisms were affected differentially by diving traffic. For instance, massive corals such as Orbicella annularis were 31 % less abundant at heavy than light diver traffic areas, while gorgonians and sponges had similar abundances at heavy and light diver traffic areas. Our results match those of previous studies on the resistance and resilience of tropical benthic reef organisms to physical disturbances that suggest that stony corals are more prone to physical damage than gorgonians and sponges. We provide a number of possible management strategies that could reduce the effects of recreational SCUBA divers on Bonaire Communicated by
Marine viruses have an important role in the dynamics of phytoplankton blooms and have increasing representation in ocean ecosystem and biogeochemical models. There are multiple described functional forms available for incorporating viruses into ocean models, but most of them have not been validated against time series abundance data. We reviewed the functional forms currently used for lytic marine virus-host dynamics and evaluated them against a compiled database of Emiliania huxleyi and E. huxleyi-virus (EhV) abundances. The database includes data aggregated from three scales: laboratory, mesocosm, and field studies. Data-model comparison supported some standard functional forms, for example a linear infection term, and did not support other standard functional forms, for example a linear viral decay term. This analysis also provided evidence of density dependence within virion populations and a possible mechanism for lower virus-host ratios at high virion abundances. Some of the patterns were scale-dependent, suggesting that processes studied at one scale might not translate to another scale. As marine virus model formulations diversify over time, there is the need for model inter-comparison and evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.