An unbiased proteomic screen to identify integrin-linked kinase (ILK) interactors revealed rictor as an ILK-binding protein. This finding was interesting because rictor, originally identified as a regulator of cytoskeletal dynamics, is also a component of mammalian target of rapamycin complex 2 (mTORC2), a complex implicated in Akt phosphorylation. These functions overlap with known ILK functions. Coimmunoprecipitation analyses confirmed this interaction, and ILK and rictor colocalized in membrane ruffles and leading edges of cancer cells. Yeast two-hybrid assays showed a direct interaction between the NH 2 -and COOH-terminal domains of rictor and the ILK kinase domain. Depletion of ILK and rictor in breast and prostate cancer cell lines resulted in inhibition of Akt Ser 473 phosphorylation and induction of apoptosis, whereas, in several cell lines, depletion of mTOR increased Akt phosphorylation. Akt and Ser 473 P-Akt were detected in ILK immunoprecipitates and small interfering RNA-mediated depletion of rictor, but not mTOR, inhibited the amount of Ser 473 P-Akt in the ILK complex. Expression of the NH 2 -terminal (1-398 amino acids) rictor domain also resulted in the inhibition of ILK-associated Akt Ser 473 phosphorylation. These data show that rictor regulates the ability of ILK to promote Akt phosphorylation and cancer cell survival. [Cancer Res 2008;68(6):1618-24]
Multiple lines of evidence suggest that increased production and/or deposition of the -amyloid peptide, derived from the amyloid precursor protein, contributes to Alzheimer's disease. A growing list of neurotransmitters, growth factors, cytokines, and hormones have been shown to regulate amyloid precursor protein processing. Although traditionally thought to be mediated by activation of protein kinase C, recent data have implicated other signaling mechanisms in the regulation of this process. Moreover, novel mechanisms of regulation involving cholesterol-, apolipoprotein E-, and stress-activated pathways have been identified. As the phenotypic changes associated with Alzheimer's disease encompass many of these signaling systems, it is relevant to determine how altered cell signaling may be contributing to increasing brain amyloid burden. We review the myriad ways in which first messengers regulate amyloid precursor protein catabolism as well as the signal transduction cascades that give rise to these effects. Key Words: Amyloid precursor protein--Amyloid-Alzheimer's disease-Second messengers.
Cell attachment and the assembly of cytoskeletal and signaling complexes downstream of integrins are intimately linked and coordinated. Although many intracellular proteins have been implicated in these processes, a new paradigm is emerging from biochemical and genetic studies that implicates integrin-linked kinase (ILK) and its interacting proteins, such as CH-ILKBP (alpha-parvin), paxillin, and PINCH in coupling integrins to the actin cytoskeleton and signaling complexes. Genetic studies in Drosophila, Caenorhabditis elegans, and mice point to an essential role of ILK as an adaptor protein in mediating integrin-dependent cell attachment and cytoskeletal organization. Here we demonstrate, using several different approaches, that inhibiting ILK kinase activity, or expression, results in the inhibition of cell attachment, cell migration, F-actin organization, and the specific cytoskeletal localization of CH-ILKBP and paxillin in human cells. We also demonstrate that the kinase activity of ILK is elevated in the cytoskeletal fraction and that the interaction of CH-ILKBP with ILK within the cytoskeleton stimulates ILK activity and downstream signaling to PKB/Akt and GSK-3. Interestingly, the interaction of CH-ILKBP with ILK is regulated by the Pi3 kinase pathway, because inhibition of Pi3 kinase activity by pharmacological inhibitors, or by the tumor suppressor PTEN, inhibits this interaction as well as cell attachment and signaling. These data demonstrate that the kinase and adaptor properties of ILK function together, in a Pi3 kinase-dependent manner, to regulate integrin-mediated cell attachment and signal transduction.
The role of integrin-linked kinase (ILK), a kinase that is involved in various cellular processes, including adhesion and migration, has not been studied in primary neurons. Using mRNA dot blot and Western blot analysis of ILK in rat and human brain tissue, we found that ILK is expressed in various regions of the CNS. Immunohistochemical and immunocytochemical techniques revealed granular ILK staining that is enriched in neurons and colocalizes with the beta1 integrin subunit. The role of ILK in neurite growth promotion by NGF was studied in rat pheochromocytoma cells and dorsal root ganglion neurons using a pharmacological inhibitor of ILK (KP-392) or after overexpression of dominant-negative ILK (ILK-DN). Both molecular and pharmacological inhibition of ILK activity significantly reduced NGF-induced neurite outgrowth. Survival assays indicate that KP-392-induced suppression of neurite outgrowth occurred in the absence of cell death. ILK kinase activity was stimulated by NGF. NGF-mediated stimulation of phosphorylation of both AKT and the Tau kinase glycogen synthase kinase-3 (GSK-3) was inhibited in the presence of KP-392 and after overexpression of ILK-DN. Consequently, ILK inhibition resulted in an increase in the hyperphosphorylation of Tau, a substrate of GSK-3. Together these findings indicate that ILK is an important effector in NGF-mediated neurite outgrowth.
Integrin-linked kinase (Ilk) is a scaffold and kinase that links integrin receptors to the actin cytoskeleton and to signaling pathways involved in cell adhesion, migration, and extracellular matrix deposition. Targeted deletion of Ilk from embryonic mouse dorsal forebrain neuroepithelium results in severe cortical lamination defects resembling cobblestone (type II) lissencephaly. Defects in adult mutants include neuronal invasion of the marginal zone, downward displacement of marginal zone components, fusion of the cerebral hemispheres, and scalloping of the dentate gyrus. These lesions are associated with abundant astrogliosis and widespread fragmentation of the basal lamina at the cortical surface. During cortical development, neuronal ectopias are associated with severe disorganization of radial glial processes and displacement of Cajal-Retzius cells. Lesions are not seen when Ilk is specifically deleted from embryonic neurons. Interestingly, targeted Ilk deletion has no effect on proliferation or survival of cortical cells or on phosphorylation of two Ilk substrates, Pkb/Akt and Gsk-3, suggesting that Ilk does not regulate cortical lamination via these enzymes. Instead, Ilk acts in vivo as a major intracellular mediator of integrin-dependent basal lamina formation. This study demonstrates a critical role for Ilk in cortical lamination and suggests that Ilk-associated pathways are involved in the pathogenesis of cobblestone lissencephalies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.