Temperature‐sensitive (thermosensitive) hydrogels, which are part of the family of stimulus‐sensitive hydrogels, consist of water‐filled polymer networks that display a temperature‐dependent degree of swelling. Thermosensitive hydrogels, which can undergo phase transition or swell/de‐swell as temperature changes, have great potential in various technological and biomedical purposes for a number of reasons: their temperature response is reversible, hydrogels are stable and easy to prepare, they can be biocompatible and also be suitably combined with other organic and inorganic materials, resulting in new materials with outstanding properties. Among thermosensitive hydrogels poly(N‐isopropylacrylamide) (PNIPAAm) is the most extensively studied because it brings together the best properties of these materials. Consequently, in the past few years, a wide number of applications and new chemical processes to prepare PNIPAAm and their derivatives are being proposed. The objective of this review is to summarize the fundamentals of thermosensitive hydrogels and recent advances in preparation and both technological and biomedical applications of thermosensitive hydrogel, with a special focus on PNIPAAm and their derivatives. Special attention has been given to the discussion of challenges and future research perspectives based on new horizons not yet considered.
Polypropylene (PP) surgical meshes, with different knitted architectures, were chemically functionalized with gold nanoparticles (AuNPs) and 4-mercaptothiazole (4-MB) to transform their fibers into a surface enhanced Raman scattering (SERS) detectable plastic material. The application of a thin layer of poly[N-isopropylacrylamide-co-N,N′-methylene bis(acrylamide)] (PNIPAAm-co-MBA) graft copolymer, covalently polymerized to the mesh-gold substrate, caused the conversion of the inert plastic into a thermoresponsive material, resulting in the first PP implantable mesh with both SERS and temperature stimulus responses. AuNPs were homogeneously distributed over the PP yarns, offering a clear SERS recognition together with higher PNIPAAm lower critical solution temperature (LCST ∼ 37 °C) than without the metallic particles (LCST ∼ 32 °C). An infrared thermographic camera was used to observe the polymer-hydrogel folding-unfolding process and to identify the new value of the LCST, connected with the heat generation by plasmonic-resonance gold NPs. The development of SERS PP prosthesis will be relevant for the bioimaging and biomarker detection of the implant by using the plasmonic effect and Raman vibrational spectroscopy for minimally invasive interventions (such as laparoscopy), to prevent patient inflammatory processes. Furthermore, Raman sources have been proved to not damage the cells, like happens with near-infrared irradiation, representing another advantage of moving to SERS approaches. The findings reported here offer unprecedented application possibilities in the biomedical field by extrapolating the material functionalization to other nonabsorbable polymer made devices (e.g., surgical sutures, grapes, wound dressings, among others).
This work presents a novel nanoparticle‐based thermosensor implant able to reveal the precise temperature variations along the polymer filaments, as it contracts and expands due to changes in the macroscale local temperature. The multimodal device is able to trace the position and the temperature of a polypropylene mesh, employed in abdominal hernia repair, by combining plasmon resonance and Raman spectroscopy with hydrogel responsive system. The novelty relies on the attachment of the biocompatible nanoparticles, based on gold stabilized by a chitosan‐shell, already charged with the Raman reporter (RaR) molecules, to the robust prosthesis, without the need of chemical linkers. The SERS enhanced effect observed is potentiated by the presence of a quite thick layer of the copolymer (poly(N‐isopropylacrylamide)‐co‐poly(acrylamide)) hydrogel. At temperatures above the LCST of PNIPAAm‐co‐PAAm, the water molecules are expulsed and the hydrogel layer contracts, leaving the RaR molecules more accessible to the Raman source. In vitro studies with fibroblast cells reveal that the functionalized surgical mesh is biocompatible and no toxic substances are leached in the medium. The mesh sensor opens new frontiers to semi‐invasive diagnosis and infection prevention in hernia repair by using SERS spectroscopy. It also offers new possibilities to the functionalization of other healthcare products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.