The processes controlling advance and retreat of outlet glaciers in fjords draining the Greenland Ice Sheet remain poorly known, undermining assessments of their dynamics and associated sea-level rise in a warming climate. Mass loss of the Greenland Ice Sheet has increased six-fold over the last four decades, with discharge and melt from outlet glaciers comprising key components of this loss. Here we acquired oceanographic data and multibeam bathymetry in the previously uncharted Sherard Osborn Fjord in northwest Greenland where Ryder Glacier drains into the Arctic Ocean. Our data show that warmer subsurface water of Atlantic origin enters the fjord, but Ryder Glacier’s floating tongue at its present location is partly protected from the inflow by a bathymetric sill located in the innermost fjord. This reduces under-ice melting of the glacier, providing insight into Ryder Glacier’s dynamics and its vulnerability to inflow of Atlantic warmer water.
The excitation of many cells and tissues is associated with cell mechanical changes. The evidence presented herein corroborates that single cells deform during an action potential. It is demonstrated that excitation of plant cells (Chara braunii internodes) is accompanied by out-of-plane displacements of the cell surface in the micrometer range (∼1-10 μm). The onset of cellular deformation coincides with the depolarization phase of the action potential. The mechanical pulse: 1) propagates with the same velocity as the electrical pulse (within experimental accuracy, ∼10 mm s), 2) is reversible, 3) in most cases is of biphasic nature (109 out of 152 experiments), and 4) is presumably independent of actin-myosin-motility. The existence of transient mechanical changes in the cell cortex is confirmed by micropipette aspiration experiments. A theoretical analysis demonstrates that this observation can be explained by a reversible change in the mechanical properties of the cell surface (transmembrane pressure, surface tension, and bending rigidity). Taken together, these findings contribute to the ongoing debate about the physical nature of cellular excitability.
Bottom trawling is known to affect benthic faunal communities but its effects on sediment suspension and seabed biogeochemistry are less well described. In addition, few studies have been carried out in the Baltic Sea, despite decades of trawling in this unique brackish environment and the frequent occurrence of trawling in areas where hypoxia and low and variable salinity already act as ecosystem stressors. We measured the physical and biogeochemical impacts of an otter trawl on a muddy Baltic seabed. Multibeam bathymetry revealed a 36 m-wide trawl track, comprising parallel furrows and sediment piles caused by the trawl doors and shallower grooves from the groundgear, that displaced 1,000 m3 (500 t) sediment and suspended 9.5 t sediment per km of track. The trawl doors had less effect than the rest of the gear in terms of total sediment mass but per m2 the doors had 5× the displacement and 2× the suspension effect, due to their greater penetration and hydrodynamic drag. The suspended sediment spread >1 km away over the following 3–4 days, creating a 5–10 m thick layer of turbid bottom water. Turbidity reached 4.3 NTU (7 mgDW L–1), 550 m from the track, 20 h post-trawling. Particulate Al, Ti, Fe, P, and Mn were correlated with the spatio-temporal pattern of suspension. There was a pulse of dissolved N, P, and Mn to a height of 10 m above the seabed within a few hundred meters of the track, 2 h post-trawling. Dissolved methane concentrations were elevated in the water for at least 20 h. Sediment biogeochemistry in the door track was still perturbed after 48 h, with a decreased oxygen penetration depth and nutrient and oxygen fluxes across the sediment-water interface. These results clearly show the physical effects of bottom trawling, both on seabed topography (on the scale of km and years) and on sediment and particle suspension (on the scale of km and days-weeks). Alterations to biogeochemical processes suggest that, where bottom trawling is frequent, sediment biogeochemistry may not have time to recover between disturbance events and elevated turbidity may persist, even outside the trawled area.
Stratified oceanic turbulence is strongly intermittent in time and space, and therefore generally under-resolved by currently available in situ observational approaches. A promising tool to at least partly overcome this constraint are broadband acoustic observations of turbulent microstructure that have the potential to provide mixing parameters at orders of magnitude higher resolution compared to conventional approaches. Here, we discuss the applicability, limitations, and measurement uncertainties of this approach for some prototypical turbulent flows (stratified shear layers, turbulent flow across a sill), based on a comparison of broadband acoustic observations and data from a free-falling turbulence microstructure profiler. We find that broadband acoustics are able to provide a quantitative description of turbulence energy dissipation in stratified shear layers (correlation coefficient: r=0.84) if the stratification parameters required by the method are carefully preprocessed. Essential components of our suggested preprocessing algorithm are: (1) a vertical low-pass filtering of temperature and salinity profiles at a scale slightly larger than the Ozmidov length scale of turbulence and (2) an automated elimination of weakly stratified layers according to a gradient threshold criterion. We also show that in weakly-stratified conditions, the acoustic approach may yield acceptable results if representative averaged vertical temperature and salinity gradients rather than local gradients are used. Our findings provide a step towards routine turbulence measurements in the upper ocean from moving vessels by combining broadband acoustics with in situ CTD profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.