Pregnancy is a valuable model to study the association between DNA methylation and several cardiometabolic traits, due to its direct potential to influence mother’s and child’s health. Epigenetics in Pregnancy (EPIPREG) is a population-based sample with the aim to study associations between DNA-methylation in pregnancy and cardiometabolic traits in South Asian and European pregnant women and their offspring. This cohort profile paper aims to present our sample with genetic and epigenetic data and invite researchers with similar cohorts to collaborative projects, such as replication of ours or their results and meta-analysis. In EPIPREG we have quantified epigenome-wide DNA methylation in maternal peripheral blood leukocytes in gestational week 28±1 in Europeans (n = 312) and South Asians (n = 168) that participated in the population-based cohort STORK Groruddalen, in Norway. DNA methylation was measured with Infinium MethylationEPIC BeadChip (850k sites), with technical validation of four CpG sites using bisulphite pyrosequencing in a subset (n = 30). The sample is well characterized with few missing data on e.g. genotype, universal screening for gestational diabetes, objectively measured physical activity, bioelectrical impedance, anthropometrics, biochemical measurements, and a biobank with maternal serum and plasma, urine, placenta tissue. In the offspring, we have repeated ultrasounds during pregnancy, cord blood, and anthropometrics up to 4 years of age. We have quantified DNA methylation in peripheral blood leukocytes in nearly all eligible women from the STORK Groruddalen study, to minimize the risk of selection bias. Genetic principal components distinctly separated Europeans and South Asian women, which fully corresponded with the self-reported ethnicity. Technical validation of 4 CpG sites from the methylation bead chip showed good agreement with bisulfite pyrosequencing. We plan to study associations between DNA methylation and cardiometabolic traits and outcomes.
Maternal body mass index (BMI) and gestational weight gain (GWG) impacts both the mother’s and the child’s health, and epigenetic modifications have been suggested to mediate some of these effects in offspring. This systematic review aimed to summarize the current literature on associations between maternal BMI and GWG and epigenetic marks. We performed systematic searches in PubMed and EMBASE and manual searches of reference lists. We included 49 studies exploring the association between maternal BMI and/or GWG and DNA methylation or miRNA; 7 performed in maternal tissues, 13 in placental tissue and 38 in different offspring tissues. The most consistent findings were reported for the relationship between maternal BMI, in particular pre-pregnant BMI, and expression of miRNA Let-7d in both maternal blood and placental tissue, methylation of the gene HIF3A in umbilical cord blood and umbilical tissue, and with expression in the miR-210 target gene, BDNF in placental tissue and cord blood. Correspondingly, methylation of BDNF was also found in placental tissue and cord blood. The current evidence suggests that maternal BMI is associated with some epigenetic signatures in the mother, the placenta and her offspring, which could indicate that some of the effects proposed by the Developmental Origins of Health and Disease-hypothesis may be mediated by epigenetic marks. In conclusion, there is a need for large, well-designed studies and meta-analyses that can clarify the relationship between BMI, GWG and epigenetic changes.
Although there are some epigenome-wide association studies (EWAS) of insulin resistance, most of them did not replicate their findings and are focused in populations of European ancestry limiting the generalizability. In EPIPREG (294 Europeans and 162 South Asians), we conducted an EWAS of insulin resistance in maternal peripheral blood leukocytes, with replication in Born in Bradford (n=879; 430 Europeans and 449 South Asians), MENA (n=320) and Botnia (n=56) cohorts. In EPIPREG, we identified six CpG sites inversely associated with insulin resistance across ancestry, whereof five were replicated in independent cohorts (cg02988288, cg19693031, and cg26974062 in TXNIP, cg06690548 in SLC7A11, cg04861640 in ZSCAN26). From methylation quantitative trait loci analysis in EPIPREG, we identified gene variants related to all five replicated cross-ancestry CpG sites, which were associated with several cardiometabolic phenotypes. Mediation analyses suggested that the gene variants regulate insulin resistance through DNA methylation. To conclude, our cross-ancestry EWAS identified five CpG sites related with lower insulin resistance.
Aim: To perform an epigenome-wide association study (EWAS) of serum folate in maternal blood. Methods: Cross-ancestry (Europeans = 302, South Asians = 161) and ancestry-specific EWAS in the EPIPREG cohort were performed, followed by methyl quantitative trait loci analysis and association with cardiometabolic phenotypes. Replication was attempted using maternal folate intake and blood methylation data from the MoBa study and verified if the findings were significant in a previous EWAS of maternal serum folate in cord blood. Results & conclusion: cg19888088 (cross-ancestry) in EBF3, cg01952260 (Europeans) and cg07077240 (South Asians) in HERC3 were associated with serum folate. cg19888088 and cg01952260 were associated with diastolic blood pressure. cg07077240 was associated with variants in CASC15. The findings were not replicated and were not significant in cord blood.
Objectives We aimed to discover CpG sites with differential methylation in peripheral blood leukocytes associated with body mass index (BMI) in pregnancy and gestational weight gain (GWG) in women of European and South Asian ancestry. Furthermore, we aimed to investigate how the identified sites were associated with methylation quantitative trait loci, gene ontology, and cardiometabolic parameters. Methods In the Epigenetics in pregnancy (EPIPREG) sample we quantified maternal DNA methylation in peripheral blood leukocytes in gestational week 28 with Illumina’s MethylationEPIC BeadChip. In women with European (n = 303) and South Asian (n = 164) ethnic ancestry, we performed an epigenome-wide association study of BMI in gestational week 28 and GWG between gestational weeks 15 and 28 using a meta-analysis approach. Replication was performed in the Norwegian Mother, Father, and Child Cohort Study, the Study of Assisted Reproductive Technologies (MoBa-START) (n = 877, mainly European/Norwegian). Results We identified five CpG sites associated with BMI at gestational week 28 (p from 4.0 x 10− 8 to 2.1 x 10− 10). Of these, we were able to replicate three in MoBa-START; cg02786370, cg19758958 and cg10472537. Two sites are located in genes previously associated with blood pressure and BMI. Methylation at the three replicated CpG sites were associated with levels of blood pressure, lipids and glucose in EPIPREG (p from 1.2 x10− 8 to 0.04). Pathway analysis suggested involvation in inflammatory pathways (p from 1.9 x10− 8 to 4.7 x10− 5). No CpG sites were significantly associated with GWG. Conclusions We identified five CpG sites associated with BMI at gestational week 28, three of which were replicated in an independent cohort. Several gene variants were associated with methylation at cg02786379, suggesting a genetic component influencing differential methylation. The identified CpG sites were associated with cardiometabolic traits, as well as with inflammatory pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.