Substituted 6-amino-4-phenyl-tetrahydroquinoline derivatives are described that are antagonists for the G(s)-protein-coupled human follicle-stimulating hormone (FSH) receptor. These compounds show high antagonistic efficacy in vitro using a CHO cell line expressing the human FSH receptor. Antagonist 10 also showed a submicromolar IC(50) in a more physiologically relevant rat granulosa cell assay and was found to significantly inhibit follicle growth and ovulation in an ex vivo mouse model. This compound class may open the way toward a novel, nonsteroidal approach for contraception.
The central melanocortin (MC) system has been demonstrated to act downstream of leptin in the regulation of body weight. The system comprises alpha-MSH, which acts as agonist, and agouti-related protein (AgRP), which acts as antagonist at the MC3 and MC4 receptors (MC3R and MC4R). This property suggests that MCR activity is tightly regulated and that opposing signals are integrated at the receptor level. We here propose another level of regulation within the melanocortin system by showing that the human (h) MC4R displays constitutive activity in vitro as assayed by adenylyl cyclase (AC) activity. Furthermore, human AgRP(83-132) acts as an inverse agonist for the hMC4R since it was able to suppress constitutive activity of the hMC4R both in intact B16/G4F melanoma cells and membrane preparations. The effect of AgRP(83-132) on the hMC4R was blocked by the MC4R ligand SHU9119. Also the hMC3R and the mouse(m)MC5R were shown to be constitutively active. AgRP(83-132) acted as an inverse agonist on the hMC3R but not on the mMC5R. Thus, AgRP is able to regulate MCR activity independently of alpha-MSH. These findings form a basis to further investigate the relevance of constitutive activity of the MC4R and of inverse agonism of AgRP for the regulation of body weight.
The luteinizing hormone (LH) receptor plays a pivotal role in reproduction. The high-molecular-weight (HMW) human chorionic gonadotropin (hCG) and LH are the endogenous ligands of this receptor and bind to its large N terminus. The present study characterizes the binding of a new low-molecular-weight (LMW) radioligand, [ All displaced the radioligand competitively, with K i values ranging from 3.3 to 100 nM. Finally, the potency of these compounds in a cAMP-induced luciferase assay was also determined. There was a high correlation between affinity and potency (r ϭ 0.99; P Ͻ 0.0001) of these compounds. In the search for LMW ligands, which bind allosterically to the seventransmembrane domain of the LH receptor, a HMW radioligand (e.g., 125 I-hCG) is not suitable as it is not displaced by a LMW compound. Therefore, [3 H]Org 43553, a new radioligand with good binding properties, allows screening for new LMW ligands that mimic the action of the endogenous hormone at the LH receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.