Noninvasive biomarkers are urgently needed for early detection of breast cancer since the risk of recurrence, morbidity and mortality are closely related to disease stage at the time of primary surgery. In the past decade, many proteomics-based approaches were developed that utilize the protein profiling of human body fluids or identification of putative biomarkers to obtain more knowledge on the effects of cancer emergence and progression. Herein, we report on an analysis of proteins in the tear fluid from breast carcinoma patients and healthy women using a de novo proteomic approach and 25 mixed samples from each group. This study included 25 patients with primary invasive breast carcinoma and 25 age-matched healthy controls. We performed a MALDI-TOF-TOF-driven semi-quantitative comparison of tear protein levels in cancer (CA) and control (CTRL) using a de novo approach in pooled samples. Over 150 proteins in the tear fluid of CTRL and CA were identified. Using an in-house-developed algorithm we found more than 20 proteins distinctly upregulated or downregulated in the CTRL and CA groups. We identified several proteins that had modified expression in breast cancer patients. These proteins are involved in host immune system pathways (e.g., C1Q1 or S100A8) and different metabolic cascades (ALDH3A or TPI). Further validation of the results in an independent population combined with individual protein profiling of participants is needed to confirm the specificity of our findings and may lead to a better understanding of the pathological mechanism of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.