Many coastal ecosystems, such as coral reefs and seagrass meadows, currently experience overgrowth by fleshy algae due to the interplay of local and global stressors. This is usually accompanied by strong decreases in habitat complexity and biodiversity. Recently, persistent, mat-forming fleshy red algae, previously described for the Black Sea and several Atlantic locations, have also been observed in the Mediterranean. These several centimetre high mats may displace seagrass meadows and invertebrate communities, potentially causing a substantial loss of associated biodiversity. We show that the sessile invertebrate biodiversity in these red algae mats is high and exceeds that of neighbouring seagrass meadows. Comparative biodiversity indices were similar to or higher than those recently described for calcifying green algae habitats and biodiversity hotspots like coral reefs or mangrove forests. Our findings suggest that fleshy red algae mats can act as alternative habitats and temporary sessile invertebrate biodiversity reservoirs in times of environmental change.
With its geographically isolated location and geological history, the Mediterranean Sea harbors well-known biodiversity hotspots, such as Posidonia oceanica seagrass meadows. Recently, long-living mats formed by the fleshy red alga Phyllophora crispa have been described to be associated with a high diversity of sessile invertebrates in the Tyrrhenian Sea. One of the key taxa among these sessile invertebrates are bryozoans: their abundance, diversity, and spatial distribution in P. crispa mats represent a gap in scientific knowledge. Thus, we conducted a pilot study on bryozoan assemblages associated with P. crispa mats around Giglio Island (Tuscan Archipelago, Italy) in 2018, followed by a comparative study on four sites distributed around the island in the subsequent year, 2019. We compared these findings to bryozoan abundance and diversity on P. oceanica shoots and leaves during the second expedition. The findings revealed more than 46 families, with a significantly higher number of taxa identified in P. crispa mats (33) than in P. oceanica meadows (29). The Shannon diversity index was similar between P. crispa and P. oceanica shoots, while Pielou’s evenness index was lower in P. crispa mats. The most abundant families reported across all habitats were Crisiidae, Aetidae, and Lichenoporidae; but the most abundant family on P. crispa was Chlidoniidae (Chlidonia pyriformis). The assemblages associated with P. crispa differed among sites, with higher abundances but lower diversity on the exposed southernmost site. The total bryozoan abundance was significantly higher on P. crispa (average 2.83 × 106 ± 1.99 × 106 colonies per m2 seafloor) compared to P. oceanica meadows (average 0.54 × 106 ± 0.34 × 106 colonies per m2 seafloor). Our results show a high diversity of bryozoans on P. crispa thalli compared to P. oceanica meadows, which was consistent throughout the study. These findings confirm the value of the red alga-generated habitat for associated bryozoans and may have implications for future biodiversity assessments and conservation measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.