In aeronautics, economic and environmental aspects become increasingly important. As those are very much influenced by the frictional drag of the airplane, a reduction of skin friction which causes a major portion of total aerodynamic drag is desirable. One possible approach for passive drag reduction is the application of riblets small longitudinal grooves orientated in flow direction. Through an adapted rolling process, riblets can be brought into metal sheets on a large scale. For this process a thin high-strength steel wire is wound around a work roll to structure it with the negative riblet imprint. In a subsequent step the riblet profile is rolled into the sheet material. Different parameters can influence the process and the quality of the resulting riblet structure. Those parameters that depend on the sheets sheet thickness, material strength, and composition of the sheet are discussed in this paper. Form filling is used as an indicator for riblet quality. It is found that decreasing sheet thickness is beneficial for form filling, but a process dependent minimum sheet thickness exists for which this effect will reverse. Material strength is found to have a much smaller influence on form filling. Nevertheless, harder alloys seem to need a slightly smaller thickness reduction, but higher rolling forces and pressures to achieve desired form filling. Using clad instead of bare materials has a positive influence on form filling and riblet structuring. Furthermore, riblet rolling does not reduce the fatigue strength of the clad material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.