The COVID-19 pandemic has had an immediate and dramatic impact on dental education.
Mucins from human whole saliva, as well as from respiratory- and cervical-tract secretions, were subjected to density-gradient centrifugation in CsCl/0.5 M guanidinium chloride. A polydisperse population of MUC5B mucins was demonstrated in all samples using anti-peptide antisera (LUM5B-2, LUM5B-3 and LUM5B-4) raised against sequences within the MUC5B mucin. The sequences recognized by the LUM5B-2 and LUM5B-3 antisera are located within the domains flanking the highly glycosylated regions of MUC5B, and reduction increased the reactivity with these antibodies, suggesting that the epitopes are partially shielded and that these regions are folded and stabilized by disulphide bonds. Rate-zonal centrifugation before and after reduction showed MUC5B to be a large oligomeric mucin composed of disulphide-linked subunits. In saliva and respiratory-tract secretions, populations of MUC5B mucins with different charge densities were identified by ion-exchange HPLC, suggesting the presence of MUC5B 'glycoforms'. In trachea, the F2 monoclonal antibody against the sulpho-Lewis C structure reacted preferentially with the later-to-be-eluted populations. An antibody (LUM5B-4) recognizing a sequence in the C-terminal domain of MUC5B identified, after reduction, the mucin subunits as well as smaller fragments, suggesting that some of the MUC5B mucins are cleaved within the C-terminal domain. Immunohistochemistry revealed that MUC5B is produced by cells dispersed throughout the human submandibular and sublingual glands, in the airway submucosal glands as well as the goblet cells, and in the epithelium and glands of the endocervix. The F2 antibody stained a subpopulation of the MUC5B-producing cells in the airway submucosal glands, suggesting that different cells may produce different glycoforms of MUC5B in this tissue.
Mucins were extracted from the epithelial surface and the submucosal tissue of human trachea in order to enrich glycoproteins from the goblet cells and the submucosal glands respectively. The macromolecules were purified using density-gradient centrifugation, and the presence of the MUC5AC mucin was investigated using an antiserum raised against a synthetic peptide based on the sequence of the MUC5AC apoprotein. Mucins from the surface epithelium showed a higher reactivity with the antiserum relative to carbohydrate than those from the submucosa, and ion-exchange HPLC of reduced subunits revealed the presence of two distinct mucin populations in the samples. The predominant species from the surface epithelium was more acidic than the major population from the submucosa and showed a strong reactivity with the anti-MUC5AC anti-serum. In contrast, the major portion of the submucosal mucins were less acidic and showed no MUC5AC reactivity, although a more acidic population did react with the antibody. Rate-zonal centrifugation showed that the MUC5AC mucin from the surface epithelium is smaller than the major submucosal mucin, and that both are composed of subunits. Immunolocalization confirmed that the MUC5AC mucin from human trachea originates from the goblet cells and that this glycoprotein is not a major product of the submucosal glands.
Airway mucus was collected from healthy and chronic bronchitic subjects. The chronic bronchitic sputum was separated into gel and sol phase by centrifugation and mucins were isolated using isopycnic density-gradient centrifugation in CsCl. The presence of the MUC5AC and MUC2 mucins was investigated with antisera raised against synthetic peptides with sequences from the respective apoproteins. The gel and sol phase of chronic bronchitic sputum as well as healthy respiratory secretions were shown to contain MUC5AC whereas the MUC2 mucin could not be detected. Rate-zonal centrifugation showed that the MUC5AC mucin was large, polydisperse in size and that reduction yielded subunits. Ion-exchange HPLC revealed the presence of two subunit populations in all secretions, the MUC5AC subunits always being the more acidic. MUC5AC is thus the first large, subunit-based, gel-forming respiratory mucin identified and this glycoprotein is biochemically distinct from at least one other population of large, gel-forming mucins also composed of subunits but lacking a genetic identity.
Mucous secretions were collected from tracheas of patients undergoing minor surgery under general anaesthesia with tracheal intubation, and mucus glycoproteins were isolated by using isopycnic density-gradient centrifugation in CsCl/guanidinium chloride. 'Whole' mucins were excluded from a Sepharose CL-2B gel, whereas subunits obtained after reduction were included. Trypsin digestion of subunits afforded high-Mr glycopeptides (T-domains), which were further included in the gel. The latter fragments are heterogeneous and comprise two or three populations, as indicated by gel chromatography and ion-exchange h.p.l.c. Rate-zonal centrifugation showed that the 'whole' mucins are polydisperse in size, with a weight-average Mr of (14-16) x 10(6). The macromolecules were observed by electron microscopy, as linear and apparently flexible thread-like structures. Subunits and T-domains had weight-average contour lengths of 490 nm and 160 nm respectively. It is concluded that mucus glycoproteins are present in secretions from the healthy lower respiratory tract. The 'whole' tracheal mucins are assembled from subunits, which in turn can be fragmented into high-Mr glycopeptides corresponding to the oligosaccharide domains typically found in mucus glycoproteins. The size and macromolecular architecture of the tracheal mucins is thus similar to that observed for mucins from human cervical mucus, chronic bronchitic sputum and pig stomach, providing yet another example of this general design of these macromolecules, i.e. subunits assembled end-to-end into very large linear and flexible macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.