Background:
Heart failure (HF) coincides with cardiomyocyte telomere shortening. Arterial hypertension is the most prominent risk factor for HF. Both HF and arterial hypertension are associated with dysregulation of the neurohormonal axis. How neurohormonal activation is linked to telomere shortening in the pathogenesis of HF is incompletely understood.
methods:
Cardiomyocyte telomere length was assessed in a mouse model of hypertensive HF induced by excess neurohormonal activation (AngII [angiotensin II] infusion, high salt diet, and uninephrectomy), in AngII-stimulated cardiomyocytes and in endomyocardial biopsies from patients with HF. Superoxide production, expression of NOX2 (NADPH oxidase 2) and PRDX1 (peroxiredoxin 1) and HDAC6 (histone deacetylase 6) activity were assessed.
Results:
Telomere shortening occurred in vitro and in vivo, correlating with both left ventricular (LV) dilatation and LV systolic function impairment. Telomere shortening coincided with increased superoxide production, increased NOX2 expression, increased HDAC6 activity, loss of the telomere-specific antioxidant PRDX1, and increased oxidative DNA-damage. NOX2 knockout prevented PRDX1 depletion, DNA-damage and telomere shortening confirming this enzyme as a critical source of reactive oxygen species. Cotreatment with the NOX inhibitor apocynin ameliorated hypertensive HF and telomere shortening. Similarly, treatment with the HDAC6 inhibitor tubastatin A, which increases PRDX1 bioavailability, prevented telomere shortening in adult cardiomyocytes. To explore the clinical relevance of our findings, we examined endomyocardial biopsies from an all-comer population of patients with HF with reduced ejection fraction. Here, cardiomyocyte telomere length predicted the recovery of cardiac function.
Conclusions:
Cardiomyocyte telomere shortening and oxidative damage in heart failure with reduced ejection fraction induced by excess neurohormonal activation depends on NOX2-derived superoxide and may help to stratify HF therapy.
Background: Psoriasis is a systemic inflammatory disorder, primarily characterized by skin plaques. It is linked to co-morbidities including cardiovascular disease and metabolic syndrome. Several studies demonstrate that dietary habits can influence psoriasis development and severity. However, the effect of different dietary protein levels on psoriasis development and severity is poorly understood. In this study, we examine the influence of dietary protein on psoriasis-like skin disease in mice. Methods: We fed male C57BL/6J mice with regular, low protein and high protein chow for 4 weeks. Afterwards, we induced psoriasis-like skin disease by topical imiquimod (IMQ)-treatment on ear and back skin. The local cutaneous and systemic inflammatory response was investigated using flow cytometry analysis, histology and quantitative rt-PCR. Results: After 5 days of IMQ-treatment, both diets reduced bodyweight in mice, whereas only the high protein diet slightly aggravated IMQ-induced skin inflammation. IMQ-treatment induced infiltration of myeloid cells, neutrophils, and monocytes/macrophages into skin and spleen independently of diet. After IMQ-treatment, circulating neutrophils and reactive oxygen species were increased in mice on low and high protein diets. Conclusion: Different dietary protein levels had no striking effect on IMQ-induced psoriasis but aggravated the systemic pro-inflammatory phenotype.
The immune system is indispensable in the development of vascular dysfunction and hypertension. The interplay between immune cells and the vasculature, kidneys, heart and blood pressure regulating nuclei in the central nervous system results in a complex and closely interwoven relationship of the immune system with arterial hypertension. A better understanding of this interplay is necessary for optimized and individualized antihypertensive therapy. Our review article focuses on innate cells in hypertension and to what extent they impact on development and preservation of elevated blood pressure. Moreover, we address the association of hypertension with chronic autoimmune diseases. The latter are ideally suited to learn about immune-mediated mechanisms in cardiovascular disease leading to high blood pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.