A novel, strictly anaerobic, cadaverine-oxidizing, defined coculture was isolated from an anoxic freshwater sediment sample. The coculture oxidized cadaverine (1,5-diaminopentane) with sulfate as the electron acceptor. The sulfate-reducing partner could be replaced by a hydrogenotrophic methanogenic partner. The defined coculture fermented cadaverine to acetate, butyrate, and glutarate plus sulfide or methane. The key enzymes involved in cadaverine degradation were identified in cell extracts. A pathway of cadaverine fermentation via 5-aminovaleraldehyde and crotonyl-coenzyme A with subsequent dismutation to acetate and butyrate is suggested. Comparative 16S rRNA gene analysis indicated that the fermenting part of the coculture belongs to the subphylum Firmicutes but that this part is distant from any described genus. The closest known relative was Clostridium aminobutyricum, with 95% similarity.Cadaverine is a biogenic primary aliphatic amine. Together with other biogenic amines, like putrescine or spermidine, it is formed during oxygen-limited decomposition of protein-rich organic matter by decarboxylation of amino acids or by amination of aldehydes and ketones (8,27,30,42,53,54). These putrid-smelling and, at higher concentrations (100 to 400 mg per kg), often toxic compounds play a major role in food microbiology, e.g., as flavoring constituents in the ripening of cheese or as contaminants of fish and meat products, wine, and beer (24,29,49).Little is known about the degradation of primary amines. Mono-and diamine oxidases of higher organisms and bacteria (23, 41, 64) initiate aerobic degradation, leading to the respective formation of aldehyde, ammonia, and hydrogen peroxide as products (28). Alternatively, in a putrescine-degrading mutant of Escherichia coli, putrescine is degraded by a putrescine-2-oxoglutarate transaminase and a subsequent dehydrogenase to form 4-aminobutyrate, which is further metabolized via succinate (43).Anaerobic degradation of primary amines could follow basically similar pathways. The released reducing equivalents can be disposed of in a manner similar to that described for primary alcohols (9,15,16). In the absence of external electron acceptors, such as sulfate or nitrate, incomplete oxidation of cadaverine to fatty acids or dicarboxylic acids could be coupled to syntrophic methane production, homoacetogenesis, or reductive synthesis of long-chain fatty acids (1,25,31).In the present study, we describe a new isolate of strictly anaerobic bacteria which oxidizes cadaverine syntrophically with the methanogen Methanospirillum hungatei and forms acetate, butyrate, glutarate, and methane as products. The enzymes involved in the degradation of cadaverine were identified, and a catabolic pathway is proposed. MATERIALS AND METHODSSources of organisms. The coculture LC 13D was isolated from the enrichment culture La Cad, which was originally inoculated with sediment taken from the Lahn river in Marburg, Germany. Methanospirillum hungatei M1h (DSM 13809) was isolated from digested sludge ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.