SUMMARYMicrosurgical testicular sperm extraction (mTESE), combined with intracytoplasmic sperm injection (ICSI) represents a chance for azoospermic men with Klinefelter 0 s syndrome (KS) to father children. The objective of this study was to identify predictive factors for the success of mTESE from adolescents and adults with KS. The clinical data of 50 late pubertal adolescents (13-19 years) and 85 adult patients (20-61 years) with non-mosaic KS, who underwent mTESE, were analysed with respect to factors, potentially predictive of active spermatogenesis; specifically a history of cryptorchidism, age, testicular volumes, serum levels of LH, FSH, testosterone (T) and estradiol at the time of surgery. Inhibin B, AMH and INSL3 were additionally analysed in the adolescents.A younger age and a near-compensated Leydig cell function were associated with higher success of sperm retrieval via mTESE: In adolescents ≥15-19 years, spermatozoa were retrieved in 45%, compared to 31% in adults; in adolescents aged 13-14 years, spermatozoa were collected in only 10%. Adolescents with an LH ≤17.5 U/L, along with a T level ≥7.5 nmol/L had the best success rate (54%), which fell to 44% with higher LH, whereas those with low T (<7.5 nmol/L), irrespective of LH had no sperm retrieval. In adults with T levels above and LH below these thresholds, the success rate was 51%, falling to 19%, if LH was higher. When T was lower than threshold, the rate was 17%. No association between testicular volumes, serum levels of FSH, Inhibin B, AMH, estradiol and mTESE success was found. A history of cryptorchidism was associated with lower retrieval rates. A window of opportunity for an approximate 50% chance to retrieve spermatozoa via mTESE exists for young, late pubertal KS patients between age 15 and young adulthood, when Leydig cell function is at its best. In these cases, referral to a centre of expertise should be considered.
HCG/rFSH replacement during adolescence successfully induces testicular growth and spermatogenesis, irrespective of previous testosterone replacement, and enhances QoL.
We developed a variant database for diabetes syndrome genes, using the Leiden Open Variation Database platform, containing observed phenotypes matched to the genetic variations. We populated it with 628 published disease‐associated variants (December 2016) for: WFS1 (n = 309), CISD2 (n = 3), ALMS1 (n = 268), and SLC19A2 (n = 48) for Wolfram type 1, Wolfram type 2, Alström, and Thiamine‐responsive megaloblastic anemia syndromes, respectively; and included 23 previously unpublished novel germline variants in WFS1 and 17 variants in ALMS1. We then investigated genotype–phenotype relations for the WFS1 gene. The presence of biallelic loss‐of‐function variants predicted Wolfram syndrome defined by insulin‐dependent diabetes and optic atrophy, with a sensitivity of 79% (95% CI 75%–83%) and specificity of 92% (83%–97%). The presence of minor loss‐of‐function variants in WFS1 predicted isolated diabetes, isolated deafness, or isolated congenital cataracts without development of the full syndrome (sensitivity 100% [93%–100%]; specificity 78% [73%–82%]). The ability to provide a prognostic prediction based on genotype will lead to improvements in patient care and counseling. The development of the database as a repository for monogenic diabetes gene variants will allow prognostic predictions for other diabetes syndromes as next‐generation sequencing expands the repertoire of genotypes and phenotypes. The database is publicly available online at https://lovd.euro-wabb.org.
Context Current knowledge on gonadal function in congenital adrenal hyperplasia (CAH) is mostly limited to single-center/country studies enrolling small patient numbers. Overall data indicate that gonadal function can be compromised in men with CAH. Objective To determine gonadal function in men with CAH within the European ‘dsd-LIFE’ cohort. Design Cross-sectional clinical outcome study, including retrospective data from medical records. Methods Fourteen academic hospitals included 121 men with CAH aged 16–68 years. Main outcome measures were serum hormone concentrations, semen parameters and imaging data of the testes. Results At the time of assessment, 14/69 patients had a serum testosterone concentration below the reference range; 7 of those were hypogonadotropic, 6 normogonadotropic and 1 hypergonadotropic. In contrast, among the patients with normal serum testosterone (55/69), 4 were hypogonadotropic, 44 normogonadotropic and 7 hypergonadotropic. The association of decreased testosterone with reduced gonadotropin concentrations (odds ratio (OR) = 12.8 (2.9–57.3)) was weaker than the association between serum androstenedione/testosterone ratio ≥1 and reduced gonadotropin concentrations (OR = 39.3 (2.1–732.4)). Evaluation of sperm quality revealed decreased sperm concentrations (15/39), motility (13/37) and abnormal morphology (4/28). Testicular adrenal rest tumor (TART)s were present in 39/80 patients, with a higher prevalence in patients with the most severe genotype (14/18) and in patients with increased current 17-hydroxyprogesterone 20/35) or androstenedione (12/18) serum concentrations. Forty-three children were fathered by 26/113 patients. Conclusions Men with CAH have a high risk of developing hypothalamic-pituitary-gonadal disturbances and spermatogenic abnormalities. Regular assessment of endocrine gonadal function and imaging for TART development are recommended, in addition to measures for fertility protection.
Latent, rarely decompensated hypogonadism is a potential long-term consequence of undescended testes, besides infertility and testicular cancer, preferentially affecting subjects with delayed or unsuccessful correction of testicular position. Impaired Leydig cell function is likely to contribute to compromised fertility. These observations support correction of cryptorchidism during early infancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.