Colloidal CsPbBr3 nanocrystals (NCs) have emerged as promising candidates for various opto-electronic applications, such as light-emitting diodes, photodetectors, and solar cells. Here, we report on the self-assembly of cubic NCs from an organic suspension into ordered cuboidal supraparticles (SPs) and their structural and optical properties. Upon increasing the NC concentration or by addition of a nonsolvent, the formation of the SPs occurs homogeneously in the suspension, as monitored by in situ X-ray scattering measurements. The three-dimensional structure of the SPs was resolved through high-angle annular dark-field scanning transmission electron microscopy and electron tomography. The NCs are atomically aligned but not connected. We characterize NC vacancies on superlattice positions both in the bulk and on the surface of the SPs. The occurrence of localized atomic-type NC vacancies—instead of delocalized ones—indicates that NC–NC attractions are important in the assembly, as we verify with Monte Carlo simulations. Even when assembled in SPs, the NCs show bright emission, with a red shift of about 30 meV compared to NCs in suspension.
With the necessary transition to renewable energy at hand, there is a renewed research focus on increasing solar cell efficiency in order to reduce the cost of electricity. Nanomaterials are promising candidates to contribute to a new generation of low cost and highly efficient solar cells. Due to their wavelength-scale dimensions, nanomaterials display exceptionally strong light− matter interactions that lead to large perturbations in absorption and emission compared to their bulk counterparts. Although most work on nanostructured solar cells has focused on increasing the absorption, emission control may have even greater potential for improving efficiency of state-of-the-art solar cells. In this Perspective, we describe how nanostructures can be applied to improve solar cell efficiency, focusing on emission control. First, we analyze the requirements for making the most efficient solar cell by looking at the thermodynamics of energy conversion. We show that an ideal solar cell at open circuit displays emission that is identical to its absorption. Comparing this to the emission of a typical silicon solar cell shows that there are three differences: the intensity, the angles in which light is emitted, and the spectrum. These differences lead to a reduction in efficiency, mainly due to a drop in open circuit voltage. For each loss mechanism, we discuss how nanomaterials can manipulate the emission and thereby reduce the voltage loss. Finally, we analyze the performance of two conceptual designs for solar cells based on nanomaterials. These give a large improvement in efficiency compared to conventional designs, showing the great potential of nanomaterials in solar cells.
Accurately controlling light emission using nano-and microstructured lenses and antennas is an active field of research. Dielectrics are especially attractive lens materials due to their low optical losses over a broad bandwidth. In this work we measure highly directional light emission from patterned quantum dots (QDs) aligned underneath all-dielectric nanostructured microlenses. The lenses are designed with an evolutionary algorithm and have a theoretical directivity of 160. The fabricated structures demonstrate an experimental full directivity of 61 ± 3, three times higher than what has been estimated before, with a beaming half-angle of 2.6°. This high value compared to previous works is achieved via three mechanisms. First, direct electron beam patterning of QD emitters and alignment markers allowed for more localized emission and better emitter−lens alignment. Second, the lens fabrication was refined to minimize distortions between the designed shape and the final structure. Finally, a new measurement technique was developed that combines integrating sphere microscopy with Fourier microscopy. This enables complete directivity measurements, contrary to other reported values, which are typically only partial directivities or estimates of the full directivity that rely partly on simulations. The experimentally measured values of the complete directivity were higher than predicted by combining simulations with partial directivity measurements. High directivity was obtained from three different materials (cadmium-selenide-based QDs and two lead halide perovskite materials), emitting at 520, 620, and 700 nm, by scaling the lens size according to the emission wavelength.
The luminescent solar concentrator (LSC) offers a potential pathway for achieving low-cost, fixed-tilt light concentration. Despite decades of research, conversion efficiency for LSC modules has fallen far short of that achievable by geometric concentrators. However, recent advances in anisotropically emitting nanophotonic structures could enable a significant step forward in efficiency. Here, we employ Monte Carlo ray-trace modeling to evaluate the conversion efficiency for anisotropic luminophore emission as a function of photoluminescence quantum yield, waveguide concentration, and geometric gain. By spanning the full LSC parameter space, we define a roadmap toward high conversion efficiency. An analytical function is derived for the dark radiative current of an LSC to calculate the conversion efficiency from the ray-tracing results. We show that luminescent concentrator conversion efficiency can be increased from the current record value of 7.1–9.6% by incorporating anisotropy. We provide design parameters for optimized luminescent solar concentrators with practical geometrical gains of 10. Using luminophores with strongly anisotropic emission and high (99%) quantum yield, we conclude that conversion efficiencies beyond 28% are achievable. This analysis reveals that for high LSC performance, waveguide losses are as important as the luminophore quantum yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.