Group 13 metal complexes have emerged
as powerful catalysts for
transforming CO2 into added-value products. However, direct
comparisons of reactivity between Al, Ga, and In catalysts are rare.
We report aluminum (1), gallium (2), and
indium (3) complexes supported by a half-salen H[PNNO]
ligand with a pendent phosphine donor and investigate their activity
as catalysts for the copolymerization of CO2 and cyclohexene
oxide. In solution, the P-donor is dissociated for the Al and Ga complexes
while for the In complex it exhibits hemilabile behavior. The indium
complex shows higher conversion and selectivity than the Al or Ga
analogues. The mechanism of the reaction was studied by NMR and FTIR
spectroscopy experiments as well as structural characterization of
off-cycle catalytic intermediate indium trichloride complex [(PNNO)InCl3][TBA] (4). This study highlights the impact
of a hemilabile phosphine group on group 13 metals and provides a
detailed analysis of the initiation step in CO2/epoxide
copolymerization reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.