The risk of intussusception after administration of monovalent human rotavirus vaccine was not higher than the background risk of intussusception in seven lower-income sub-Saharan African countries. (Funded by the GAVI Alliance through the CDC Foundation.).
A human-porcine reassortant strain, RVA/Human-wt/ZMB/UFS-NGS-MRC-DPRU4723/2014/G5P[6], was identified in a sample collected in 2014 from an unvaccinated 12 month old male hospitalised for gastroenteritis in Zambia. We sequenced and characterised the complete genome of this strain which presented the constellation: G5-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The genotype A8 is often observed in porcine strains. Phylogenetic analyses showed that VP6, VP7, NSP2, NSP4, and NSP5 genes were closely related to cognate gene sequences of porcine strains (e.g., RVA/Pig-wt/CHN/DZ-2/2013/G5P[X] for VP7) from the NCBI database, while VP1, VP3, VP4, and NSP3 were closely related to porcine-like human strains (e.g., RVA/Human-wt/CHN/E931/2008/G4P[6] for VP1, and VP3). On the other hand, the origin of the VP2 was not clear from our analyses, as it was not only close to both porcine (e.g., RVA/Pig-tc/CHN/SWU-1C/2018/G9P[13]) and porcine-like human strains (e.g., RVA/Human-wt/LKA/R1207/2009/G4P[6]) but also to three human strains (e.g., RVA/Human-wt/USA/1476/1974/G1P[8]). The VP7 gene was located in lineage II that comprised only porcine strains, which suggests the occurrence of independent porcine-to-human reassortment events. The study strain may have collectively been derived through interspecies transmission, or through reassortment event(s) involving strains of porcine and porcine-like human origin. The results of this study underline the importance of whole-genome characterisation of rotavirus strains and provide insights into interspecies transmissions from porcine to humans.
Rotarix® vaccine was implemented nationwide in Zambia in 2013. In this study, four unusual strains collected in the post-vaccine period were subjected to whole genome sequencing and analysis. The four strains possessed atypical genotype constellations, with at least one reassortant genome segment within the constellation. One of the strains (UFS-NGS-MRC-DPRU4749) was genetically and phylogenetically distinct in the VP4 and VP1 gene segments. Pairwise analyses demonstrated several amino acid disparities in the VP4 antigenic sites of this strain compared to that of Rotarix®. Although the impact of these amino acid disparities remains to be determined, this study adds to our understanding of the whole genomes of reassortant strains circulating in Zambia following Rotarix® vaccine introduction.
Background
In Zambia, before rotavirus vaccine introduction, the virus accounted for about 10 million episodes of diarrhoea, 63 000 hospitalisations and 15 000 deaths in 2015, making diarrhoea the third leading cause of death after pneumonia and malaria. In Zambia, despite the introduction of the vaccine acute diarrhoea due to rotaviruses has continued to affect children aged five years and below. This study aimed to characterise the rotavirus genotypes which were responsible for diarrhoeal infections in vaccinated infants aged 2 to 12 months and to determine the relationship between rotavirus strains and the severity of diarrhoea in 2016.
Methods
Stool samples from infants aged 2 to 12 months who presented to the hospital with acute diarrhoea of three or more episodes in 24 hours were tested for group A rotavirus. All positive specimens that had enough sample were genotyped using reverse transcriptase Polymerase Chain Reaction (RT-PCR). A 20-point Vesikari clinical score between 1–5 was considered as mild, 6–10 as moderate and greater or equal to 11 as severe.
Results
A total of 424 stool specimens were tested of which 153 (36%, 95% CI 31.5% to 40.9%) were positive for VP6 rotavirus antigen. The age-specific rotavirus infections decreased significantly (p = 0.041) from 2–4 months, 32.0% (49/118) followed by a 38.8% (70/181) infection rate in the 5–8 months’ category and subsequently dropped in the infants aged 9–12 months with a positivity rate of 27.2%. 38.5% of infants who received a single dose, 34.5% of those who received a complete dose and 45.2% (19/42) of the unvaccinated tested positive for rotavirus. The predominant rotavirus genotypes included G2P[6] 36%, G1P[8] 32%, mixed infections 19%, G2P[4] 6%, G1P[6] 4% and G9P[6] 3%.
Discussion and conclusion
Results suggest breakthrough infection of heterotypic strains (G2P[6] (36%), homotypic, G1P[8] (32%) and mixed infections (19%) raises concerns about the effects of the vaccination on the rotavirus diversity, considering the selective pressure that rotavirus vaccines could exert on viral populations. This data indicates that the rotavirus vaccine has generally reduced the severity of diarrhoea despite the detection of the virus strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.