Today, agricultural productivity is essential to meet the needs of a growing population, and is also a key tool in coping with climate change. Innovative plant breeding technologies such as molecular markers, phenotyping, genotyping, the CRISPR/Cas method and next-generation sequencing can help agriculture meet the challenges of the 21st century more effectively. Therefore, the aim of the research was to identify single-nucleotide polymorphisms (SNPs) and SilicoDArT markers related to select morphological features determining the yield in maize. The plant material consisted of ninety-four inbred lines of maize of various origins. These lines were phenotyped under field conditions. A total of 14 morphological features was analyzed. The DArTseq method was chosen for genotyping because this technique reduces the complexity of the genome by restriction enzyme digestion. Subsequently, short fragment sequencing was used. The choice of a combination of restrictases allowed the isolation of highly informative low copy fragments of the genome. Thanks to this method, 90% of the obtained DArTseq markers are complementary to the unique sequences of the genome. All the observed features were normally distributed. Analysis of variance indicated that the main effect of lines was statistically significant (p < 0.001) for all 14 traits of study. Thanks to the DArTseq analysis with the use of next-generation sequencing (NGS) in the studied plant material, it was possible to identify 49,911 polymorphisms, of which 33,452 are SilicoDArT markers and the remaining 16,459 are SNP markers. Among those mentioned, two markers associated with four analyzed traits deserved special attention: SNP (4578734) and SilicoDArT (4778900). SNP marker 4578734 was associated with the following features: anthocyanin coloration of cob glumes, number of days from sowing to anthesis, number of days from sowing to silk emergence and anthocyanin coloration of internodes. SilicoDArT marker 4778900 was associated with the following features: number of days from sowing to anthesis, number of days from sowing to silk emergence, tassel: angle between the axis and lateral branches and plant height. Sequences with a length of 71 bp were used for physical mapping. The BLAST and EnsemblPlants databases were searched against the maize genome to identify the positions of both markers. Marker 4578734 was localized on chromosome 7, the closest gene was Zm00001d022467, approximately 55 Kb apart, encoding anthocyanidin 3-O-glucosyltransferase. Marker 4778900 was located on chromosome 7, at a distance of 45 Kb from the gene Zm00001d045261 encoding starch synthase I. The latter observation indicated that these flanking SilicoDArT and SNP markers were not in a state of linkage disequilibrium.
Leaf rust caused by the fungus Puccinia recondita f. sp. tritici is one of the most dangerous diseases of common wheat. Infections caused by fungal pathogens reduce the quantity and quality of yields of many cereal species. The most effective method to limit plant infection is to use cultivars that show rust resistance. Genetically conditioned horizontal-type resistance (racial-nonspecific) is a desirable trait because it is characterized by more stable expression compared to major (R) genes that induce racially specific resistance, often overcome by pathogens. Horizontal resistance is conditioned by the presence of slow rust genes, which include genes Lr34 and Lr46. This study aimed to identify markers linked to both genes in 64 common wheat lines and to develop multiplex PCR reaction conditions that were applied to identify both genes simultaneously. The degree of infestation of the analyzed lines was also assessed in field conditions during the growing season of 2017 and 2018. Simple sequence repeat anchored-polymerase chain reaction (SSR-PCR) marker csLV was identified during analysis in line PHR 4947. The presence of a specific sequence has also been confirmed in multiplex PCR analyses. In addition to gene Lr34, gene Lr46 was identified in this genotype. Lines PHR 4947 and PHR 4819 were characterized by the highest leaf rust resistance in field conditions. During STS-PCR analyses, the marker wmc44 of gene Lr46 was identified in most of the analyzed lines. This marker was not present in the following genotypes: PHR 4670, PHR 4800, PHR 4859, PHR 4907, PHR 4922, PHR 4949, PHR 4957, PHR 4995, and PHR 4997. The presence of a specific sequence has also been confirmed in multiplex PCR analyses. Genotypes carrying the markers of the analyzed gene showed good resistance to leaf rust in field conditions in both 2017 and 2018. Research has demonstrated that marker assisted selection (MAS) and multiplex PCR techniques are excellent tools for selecting genotypes resistant to leaf rust.
On the basis of studies carried out in the last few years, it is estimated that maize diseases cause yield losses of up to 30% each year. The most dangerous diseases are currently considered to be caused by fungi of the genus Fusarium, which are the main culprits of root rot, ear rots, and stalk rot. Early plant infection causes grain diminution, as well as a significant deterioration in nutritional value and fodder quality due to the presence of harmful mycotoxins. Therefore, the aim of the research was to identify new markers of the SilicoDArT and SNP type, which could be used for the mass selection of varieties resistant to fusarium. The plant material consisted of 186 inbred maize lines. The lines came from experimental plots belonging to two Polish breeding companies: Plant Breeding Smolice Ltd., (Co. , Poland). Plant Breeding and Acclimatization Institute—National Research Institute Group (51°41′23.16″ N, 17°4′18.241″ E), and Małopolska Plant Breeding Kobierzyce,Poland Ltd., (Co., Poland) (50°58′19.411″ N, 16°55′47.323″ E). As a result of next-generation sequencing, a total of 81,602 molecular markers were obtained, of which, as a result of the associative mapping, 2962 (321 SilicoDArT and 2641 SNP) significantly related to plant resistance to fusarium were selected. Out of 2962 markers significantly related to plant resistance in the fusarium, seven markers (SilicoDArT, SNP) were selected, which were significant at the level of 0.001. They were used for physical mapping. As a result of the analysis, it was found that two out of seven selected markers (15,097—SilicoDArT and 58,771—SNP) are located inside genes, on chromosomes 2 and 3, respectively. Marker 15,097 is anchored to the gene encoding putrescine N-hydroxycinnamoyltransferase while marker 58,771 is anchored to the gene encoding the peroxidase precursor 72. Based on the literature data, both of these genes may be associated with plant resistance to fusarium. Therefore, the markers 15,097 (SilicoDArT) and 58,771 (SNP) can be used in breeding programs to select lines resistant to fusarium.
Lr46/Yr29/Pm39 ( Lr46 ) is a gene for slow rusting resistance in wheat. The aim of the study was to analyze the miRNA expression in selected common wheat cultivars carrying resistance genes, Lr46 among others (HN Rod, Pavon‘S’, Myna‘S’, Frontana‘S’, and Sparrow’S’) in response to leaf rust infection caused by Puccinia triticina Erikss. In the Pavon ‘S’, Myna ‘S’, Frontana‘S’, and Sparow‘S’ varieties a product with a length of 242 bp has been identified, which is specific to the Xwmc44 marker linked to the brown rust resistance gene Lr46 . In the next step, the differences in the expression of microRNA (miR5085 and miR164) associated with the Lr46 gene, which is responsible for different resistance of selected wheat cultivars to leaf rust, were examined using emulsion PCR (ddPCR). In the experiment, biotic stress was induced in mature plants by infecting them with fungal spores under controlled conditions in a growth chamber. For analysis the plant material was collected before inoculation and 6, 12, 24, and 48 h after inoculation. The experiments also showed that plant infection with Puccinia triticina resulted in an increase in miR164 expression in cultivars carrying the Lr46 gene. The expression of miR164 remained stable in a control cultivar (HN ROD) lacking this gene. This has proved that miR164 can be involved in leaf rust resistance mechanisms.
The main efforts in common wheat (Triticum aestivum L.) breeding focus on yield, grain quality, and resistance to biotic and abiotic stresses. One of the major threats affecting global wheat cultivation and causing significant crop production losses are rust diseases, including leaf rust caused by a biotrophic fungus Puccinia triticina Eriks. Genetically determined resistance to leaf rust has been characterized in young plants (seedling resistance) as well as in plants at the adult plant stage. At the seedling stage, resistance is controlled vertically by major R genes, conferring a race-specific response that is highly effective but usually short-lived due to the rapid evolution of potentially virulent fungi. In mature plants, horizontal adult plant resistance (APR) was described, which provides long-term protection against multiple races of pathogens. A better understanding of molecular mechanisms underlying the function of APR genes would enable the development of new strategies for resistance breeding in wheat. Therefore, in the present study we focused on early transcriptomic responses of two major wheat APR genes, Lr34 and Lr67, and three complementary miRNAs, tae-miR9653b, tae-miR9773 and tae-miR9677b, to inoculation with P. triticina. Plant material consisted of five wheat reference varieties, Artigas, NP846, Glenlea, Lerma Rojo and TX89D6435, containing the Lr34/Yr18 and Lr67/Yr46 resistance genes. Biotic stress was induced by inoculation with fungal spores under controlled conditions in a phytotron. Plant material consisted of leaf tissue sampled before inoculation as well as 6, 12, 24 and 48 h postinoculation (hpi). The APR gene expression was quantified using real-time PCR with two reference genes, whereas miRNA was quantified using droplet digital PCR. This paper describes the resistance response of APR genes to inoculation with races of leaf rust-causing fungi that occur in central Europe. The study revealed high variability of expression profiles between varieties and time-points, with the prevalence of downregulation for APR genes and upregulation for miRNAs during the development of an early defense response. Nevertheless, despite the downregulation initially observed, the expression of Lr34 and Lr67 genes in studied cultivars was significantly higher than in a control line carrying wild (susceptible) alleles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.