Given the intimate link between inflammation and dysregulated cell proliferation in cancer, we investigated cytokine-triggered gene expression in different cell cycle stages. Transcriptome analysis revealed that G1 release through cyclin-dependent kinase 6 (CDK6) and CDK4 primes and cooperates with the cytokine-driven gene response. CDK6 physically and functionally interacts with the NF-κB subunit p65 in the nucleus and is found at promoters of many transcriptionally active NF-κB target genes. CDK6 recruitment to distinct chromatin regions of inflammatory genes was essential for proper loading of p65 to its cognate binding sites and for the function of p65 coactivators, such as TRIP6. Furthermore, cytokine-inducible nuclear translocation and chromatin association of CDK6 depends on the kinase activity of TAK1 and p38. These results have widespread biological implications, as aberrant CDK6 expression or activation that is frequently observed in human tumors modulates NF-κB to shape the cytokine and chemokine repertoires in chronic inflammation and cancer.
The authors wish to note the following: "Since the publication of our paper, we have become aware that the quantitative data presented in Fig. 1B do not represent the full raw data set provided in the supporting information deposited online at https://doi.org/ 10.15125/BATH-00317. We are therefore publishing a corrected version of Fig. 1 in which the graphs in panel B have been replaced by those generated from the complete online dataset. The result and the conclusions drawn are unchanged. A minor correction has also been made to the figure legend to reflect the altered P values that result from use of the complete dataset." The corrected Fig. 1 and its corrected legend appear below.
In Figure 6H of the above article, the authors inadvertently omitted three plus signs indicating IL-1 stimulation in the RT-PCR and ChIP data for the shcyclin D1 samples presented in the bar graph panels. The corrected version of Figure 6H is shown below. This information has been updated online. The authors regret any inconvenience that this may have caused.
Diet is generally believed to affect the aging process. The effects of complex foods on life span can be investigated using simple models that produce rapid results and allow the identification of food-gene interactions. Here, we show that 1 % lyophilized broccoli, added to flour as a dietary source, significantly increases the life span of the red flour beetle (Tribolium castaneum) under physiological conditions (32 °C) and under heat stress (42 °C). The beneficial effects of broccoli could also be reproduced by supplementing flour with the isothiocyanate sulforaphane at concentrations found in the broccoli-supplemented diet. We identified stress-resistant genes responsible for these effects on longevity by microinjecting pupae with double-stranded RNA to induce RNA interference (RNAi). The knockdown of transcripts encoding homologs of Nrf-2, Jnk-1 and Foxo-1 reduced the life span of beetles and abrogated the beneficial effects of broccoli, whereas the knockdown of Sirt-1 and Sirt-3 had no impact in either scenario. In conclusion, T. castaneum is a suitable model organism to investigate food-gene interactions that affect stress resistance and longevity, and RNAi can be used to identify functionally relevant genes. As a proof of principle, we have shown here that broccoli increases the longevity of beetles and mediates its effect through signaling pathways that include key stress-resistant factors such as Nrf-2, Jnk-1 and Foxo-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.