P rimary aldosteronism (PA) is the most common form of secondary hypertension, with a prevalence of 5% to 15% among hypertensive patients and is characterized by the autonomous hypersecretion of aldosterone. Sporadic PA and 3 familial forms (familial hyperaldosteronism types I, II, and III) have been described.1 Sporadic PA accounts for >90% of all cases and is caused by either an aldosterone-producing adenoma (APA), which can be surgically removed, or bilateral adrenal hyperplasia, which is treatable with mineralocorticoid receptor antagonists.Somatic APA mutations in the KCNJ5 gene, which encodes the G-protein-activated inward rectifier K + channel 4, GIRK4 (also called the inward rectifier K + channel, Kir3.4), were first identified by Choi et al. 2 Subsequently, Boulkroun et al 3 determined a 34% prevalence of KCNJ5 mutations in a large European cohort of 380 APA. Intriguingly, the KCNJ5 mutations were markedly more prevalent in women, 3 and this predominance was confirmed by successive studies. 4,5 To date, 5 different KCNJ5 mutations causing sporadic PA have been identified, the majority of which are Abstract-Aldosterone-producing adenomas (APAs) cause a sporadic form of primary aldosteronism and somatic mutations in the KCNJ5 gene, which encodes the G-protein-activated inward rectifier K + channel 4, GIRK4, account for ≈40% of APAs. Additional somatic APA mutations were identified recently in 2 other genes, ATP1A1 and ATP2B3, encoding Na + /K + -ATPase 1 and Ca 2+ -ATPase 3, respectively, at a combined prevalence of 6.8%. We have screened 112 APAs for mutations in known hotspots for genetic alterations associated with primary aldosteronism. Somatic mutations in ATP1A1, ATP2B3, and KCNJ5 were present in 6.3%, 0.9%, and 39.3% of APAs, respectively, and included 2 novel mutations (Na
Somatic mutations of the potassium channel KCNJ5 are found in 40% of aldosterone producing adenomas (APAs). APA-related mutations of KCNJ5 lead to a pathological Na(+) permeability and a rise in cytosolic Ca(2+), the latter presumably by depolarizing the membrane and activating voltage-gated Ca(2+) channels. The aim of this study was to further investigate the effects of mutated KCNJ5 channels on intracellular Na(+) and Ca(2+) homeostasis in human adrenocortical NCI-H295R cells. Expression of mutant KCNJ5 led to a 2-fold increase in intracellular Na(+) and, in parallel, to a substantial rise in intracellular Ca(2+). The increase in Ca(2+) appeared to be caused by activation of voltage-gated Ca(2+) channels and by an impairment of Ca(2+) extrusion by Na(+)/Ca(2+) exchangers. The mutated KCNJ5 exhibited a pharmacological profile that differed from the one of wild-type channels. Mutated KCNJ5 was less Ba(2+) and tertiapin-Q sensitive but was inhibited by blockers of Na(+) and Ca(2+)-transporting proteins, such as verapamil and amiloride. The clinical use of these drugs might influence aldosterone levels in APA patients with KCNJ5 mutations. This might implicate diagnostic testing of APAs and could offer new therapeutic strategies.
Adrenal aldosterone-producing adenomas (APAs) are a main cause for primary aldosteronism leading to arterial hypertension. Physiologically, aldosterone production in the adrenal gland is stimulated by angiotensin II and high extracellular potassium. These stimuli lead to a depolarization of the plasma membrane and, as a consequence, an increase of intracellular Ca(2+). Mutations of the plasma membrane Ca(2+)-ATPase ATP2B3 have been found in APAs with a prevalence of 0.6%-3.1%. Here, we investigated the effects of the APA-associated ATP2B3(Leu425_Val426del) mutation in adrenocortical NCI-H295R and human embryonic kidney (HEK-293) cells. Ca(2+) measurements revealed a higher basal Ca(2+) level in cells expressing the mutant ATP2B3. This rise in intracellular Ca(2+) was even more pronounced under conditions with high extracellular Ca(2+) pointing to an increased Ca(2+) influx associated with the mutated protein. Furthermore, cells with the mutant ATP2B3 appeared to have a reduced capacity to export Ca(2+) suggesting a loss of the physiological pump function. Surprisingly, expression of the mutant ATP2B3 caused a Na(+)-dependent inward current that strongly depolarized the plasma membrane and compromised the cytosolic cation composition. In parallel to these findings, mRNA expression of the cytochrome P450, family 11, subfamily B, polypeptide 2 (aldosterone synthase) was substantially increased and aldosterone production was enhanced in cells overexpressing mutant ATP2B3. In summary, the APA-associated ATP2B3(Leu425_Val426del) mutant promotes aldosterone production by at least 2 different mechanisms: 1) a reduced Ca(2+) export due to the loss of the physiological pump function; and 2) an increased Ca(2+) influx due to opening of depolarization-activated Ca(2+) channels as well as a possible Ca(2+) leak through the mutated pump.
Aldosterone-producing adenoma (APA) is a major cause of primary aldosteronism, leading to secondary hypertension. Somatic mutations in the gene for the α1 subunit of the Na(+)/K(+)-ATPase were found in about 6% of APAs. APA-related α1 subunit of the Na(+)/K(+)-ATPase mutations lead to a loss of the pump function of the Na(+)/K(+)-ATPase, which is believed to result in membrane depolarization and Ca(2+)-dependent stimulation of aldosterone synthesis in adrenal cells. In addition, H(+) and Na(+) leak currents via the mutant Na(+)/K(+)-ATPase were suggested to contribute to the phenotype. The aim of this study was to investigate the cellular pathophysiology of adenoma-associated Na(+)/K(+)-ATPase mutants (L104R, V332G, G99R) in adrenocortical NCI-H295R cells. The expression of these Na(+)/K(+)-ATPase mutants depolarized adrenal cells and stimulated aldosterone secretion. However, an increase of basal cytosolic Ca(2+) levels in Na(+)/K(+)-ATPase mutant cells was not detectable, and stimulation with high extracellular K(+) hardly increased Ca(2+) levels in cells expressing L104R and V332G mutant Na(+)/K(+)-ATPase. Cytosolic pH measurements revealed an acidification of L104R and V332G mutant cells, despite an increased activity of the Na(+)/H(+) exchanger. The possible contribution of cellular acidification to the hypersecretion of aldosterone was supported by the observation that aldosterone secretion of normal adrenocortical cells was stimulated by acetate-induced acidification. Taken together, mutations of the Na(+)/K(+)-ATPase depolarize adrenocortical cells, disturb the K(+) sensitivity, and lower intracellular pH but, surprisingly, do not induce an overt increase of intracellular Ca(2+). Probably, the autonomous aldosterone secretion is caused by the concerted action of several pathological signaling pathways and incomplete cellular compensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.