Aberrant DNA methylation plays a pivotal role in tumor development and progression. DNA hypomethylating agents (HMA) constitute a class of drugs which are able to reverse DNA methylation, thereby triggering the re-programming of tumor cells. The first-generation HMA azacitidine and decitabine have now been in standard clinical use for some time, offering a valuable alternative to previous treatments in acute myeloid leukemia and myelodysplastic syndromes, so far particularly in older, medically non-fit patients. However, the longer we use these drugs, the more we are confronted with the (almost inevitable) development of resistance. This review provides insights into the mode of action of HMA, mechanisms of resistance to this treatment, and strategies to overcome HMA resistance including next-generation HMA and HMA-based combination therapies.
Fetal hemoglobin may provide a useful dynamic biomarker during hypomethylating agent therapy of patients with myelodysplastic syndrome and acute myeloid leukemia.
Hypomethylating agents (HMA) have become the backbone of nonintensive acute myeloid leukemia/myelodysplastic syndrome (AML/MDS) treatment, also by virtue of their activity in patients with adverse genetics, for example, monosomal karyotypes, often with losses on chromosome 7, 5, or 17. No comparable activity is observed with cytarabine, a cytidine analogue without DNA-hypomethylating properties. As evidence exists for compounding hypermethylation and gene silencing of hemizygous tumor suppressor genes (TSG), we thus hypothesized that this effect may preferentially be reversed by the HMAs decitabine and azacitidine. An unbiased RNA-sequencing approach was developed to interrogate decitabine-induced transcriptome changes in AML cell lines with or without a deletion of chromosomes 7q, 5q or 17p. HMA treatment preferentially upregulated several hemizygous TSG in this genomic region, significantly derepressing endogenous retrovirus (ERV)3–1, with promoter demethylation, enhanced chromatin accessibility, and increased H3K4me3 levels. Decitabine globally reactivated multiple transposable elements, with activation of the dsRNA sensor RIG-I and interferon regulatory factor (IRF)7. Induction of ERV3–1 and RIG-I mRNA was also observed during decitabine treatment in vivo in serially sorted peripheral blood AML blasts. In patient-derived monosomal karyotype AML murine xenografts, decitabine treatment resulted in superior survival rates compared with cytarabine. Collectively, these data demonstrate preferential gene derepression and ERV reactivation in AML with chromosomal deletions, providing a mechanistic explanation that supports the clinical observation of superiority of HMA over cytarabine in this difficult-to-treat patient group.
Significance:
These findings unravel the molecular mechanism underlying the intriguing clinical activity of HMAs in AML/MDS patients with chromosome 7 deletions and other monosomal karyotypes.
See related commentary by O'Hagan et al., p. 813
Background
Mutations in the EZH2 gene are recurrently found in patients with myeloid neoplasms and are associated with a poor prognosis. We aimed to characterize genetic and epigenetic alterations of EZH2 in 58 patients (51 with acute myeloid leukemia and 7 with myelodysplastic or myeloproliferative neoplasms) by integrating data on EZH2 mutational status, co-occurring mutations, and EZH2 copy number status with EZH2 protein expression, histone H3K27 trimethylation, and EZH2 promoter methylation.
Results
EZH2 was mutated in 6/51 acute myeloid leukemia patients (12%) and 7/7 patients with other myeloid neoplasms. EZH2 mutations were not overrepresented in patients with chromosome 7q deletions or losses. In acute myeloid leukemia patients, EZH2 mutations frequently co-occurred with CEBPA (67%), ASXL1 (50%), TET2 and RAD21 mutations (33% each). In EZH2-mutated patients with myelodysplastic or myeloproliferative neoplasms, the most common co-mutations were in ASXL1 (100%), NRAS, RUNX1, and STAG2 (29% each). EZH2 mutations were associated with a significant decrease in EZH2 expression (p = 0.0002), which was similar in patients with chromosome 7 aberrations and patients with intact chromosome 7. An association between EZH2 protein expression and H3K27 trimethylation was observed in EZH2-unmutated patients (R2 = 0.2, p = 0.01). The monoallelic state of EZH2 was not associated with EZH2 promoter hypermethylation. In multivariable analyses, EZH2 mutations were associated with a trend towards an increased risk of death (hazard ratio 2.51 [95% confidence interval 0.87–7.25], p = 0.09); similarly, low EZH2 expression was associated with elevated risk (hazard ratio 2.54 [95% confidence interval 1.07–6.04], p = 0.04).
Conclusions
Perturbations of EZH2 activity in AML/MDS occur on different, genetic and non-genetic levels. Both low EZH2 protein expression and, by trend, EZH2 gene mutations predicted inferior overall survival of AML patients receiving standard chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.