The number of cancer-related diseases is still growing. Despite the availability of a large number of anticancer drugs, the ideal drug is still being sought that would be effective, selective, and overcome the effect of multidrug resistance. Therefore, researchers are still looking for ways to improve the properties of already-used chemotherapeutics. One of the possibilities is the development of targeted therapies. The use of prodrugs that release the bioactive substance only under the influence of factors characteristic of the tumor microenvironment makes it possible to deliver the drug precisely to the cancer cells. Obtaining such compounds is possible by coupling a therapeutic agent with a ligand targeting receptors, to which the attached ligand shows affinity and is overexpressed in cancer cells. Another way is to encapsulate the drug in a carrier that is stable in physiological conditions and sensitive to conditions of the tumor microenvironment. Such a carrier can be directed by attaching to it a ligand recognized by receptors typical of tumor cells. Sugars seem to be ideal ligands for obtaining prodrugs targeted at receptors overexpressed in cancer cells. They can also be ligands modifying polymers’ drug carriers. Furthermore, polysaccharides can act as selective nanocarriers for numerous chemotherapeutics. The proof of this thesis is the huge number of papers devoted to their use for modification or targeted transport of anticancer compounds. In this work, selected examples of broad-defined sugars application for improving the properties of both already-used drugs and substances exhibiting anticancer activity are presented.
The design and synthesis of hydrazone-based switches with a CF 3 reporting group for 19 F pH imaging using relaxation rate changes were described. A paramagnetic center was introduced into the hydrazone molecular switch scaffold by substitution of an ethyl functional group with a paramagnetic complex. The mechanism of activation relies on a gradual increase in T 1 and T 2 magnetic resonance imaging (MRI) relaxation times as pH decreases due to E/Z isomerization, which results in a change in the distance between fluorine atoms and the paramagnetic center. Among the three possible variants of the ligand, the meta isomer was found to offer the highest potential changes in relaxation rates due to the significant paramagnetic relaxation enhancement (PRE) effect and a stable position of the 19 F signal, allowing for the tracking of a single narrow 19 F resonance for imaging purposes. The selection of the most suitable Gd(III) paramagnetic ion for complexation was conducted by theoretical calculations based on the Bloch−Redfield−Wangsness (BRW) theory, taking into account the electron−nucleus dipole−dipole and Curie interactions only. The results were verified experimentally, confirming the accuracy of theoretical predictions, good solubility, and stability of the agents in water and the reversible transition between E and Z−H + isomers. The results demonstrate the potential of this approach for pH imaging using relaxation rate changes instead of chemical shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.