Agriculture is one of the largest consumers of water and energy. This paper evaluated the agricultural sustainability of the Chenmengquan irrigation district of China based on the water–energy–food nexus. One objective weighting method and one subjective weighting method were integrated, based on game theory, and a matter–element model was constructed to evaluate agricultural sustainability for the research region. The sensitivity of each index to the evaluation class was also analyzed. The results showed that agricultural sustainability was moderate in 2006–2012 and high in 2012–2015. The indexes, which represent water-use efficiency and yield per unit area of crops, had higher sensitivities in the context of the present case study. The results also indicated that agricultural sustainability had a comparatively positive trend between 2012 and 2015, and that pesticide utilization was the most important issue for agricultural sustainability. The approach of using the combination of a weighting method, based upon game theory, and the use of the matter–element model provides a guide for the evaluation of agricultural sustainability.
The tremendous increase in resource consumption over the past century and the environmental challenges it entails has spurred discussions for a shift from a linear to a circular resource use. However, to date most resource studies are restricted to one material or a single sector or process. In this work, a coupled material flow analysis taking the national phosphorus (P) and nitrogen (N) system of Austria as an example for two closely connected resource systems is conducted. Effects of different measures aimed at reducing P and/or N-demand, increasing recycling or reducing emissions to air and water are compared to a reference state (representing the actual situation in 2015). Changes in the mineral fertilizer demand of the system, P and N losses in the waste sector, water emissions of P and N, P soil accumulation and atmospheric N emissions are analyzed. Overall positive feedbacks between measures and between different goals of one measure always outweigh negative ones, which is why the highest efficiency gains (57±4%) can be achieved by a combination of all the 16 measures studied. Potentials for the reduction of mineral fertilizer demand are larger than for emission reduction though, confirming the past priority of environmental protection over resource protection. Although coupling significantly raises model complexity it can be shown that material flows of more than one substance can be simultaneously analyzed in a rather complex system. This may reveal interrelations, co-benefits and trade-offs between different resources that might have been omitted in a mono-substance analysis and thus improve judgment of sustainability and viability of different management strategies.
Circular economy is currently characterized by various definitions, measurement approaches, and critical analyses thereof coexisting alongside each other. Whether the concept eventually prevails or collapses will depend to some extent on our success in harmonizing assessment methods among public, scientific, and private institutions, as well as across different materials and scales. Therefore, in this article, we present a generic material flow analysis framework that might serve as a common basis for circularity assessment, and test it by means of three case studies. It proved impossible to eliminate all subjective assumptions when transforming a real complex system into the generic framework, especially regarding the definition of by-products. However, by introducing subsystems it is at least possible to make such assumptions transparent. Therefore, adequate comparability across regions, materials, and scales is provided. Moreover, the generic system allows for coupled analysis of multiple materials simultaneously so that interactions between them can be studied, as well and a deeper insight into overall sustainability of the system can be gained.
The Baltic Sea is considered the marine water body most severely affected by eutrophication within Europe. Due to its limited water exchange nutrients have a particularly long residence time in the sea. While several studies have analysed the costs of reducing current nutrient emissions, the costs for remediating legacy nutrient loads of past emissions remain unknown. Although the Baltic Sea is a comparatively well-monitored region, current data and knowledge is insufficient to provide a sound quantification of legacy nutrient loads and much less their abatement costs. A first rough estimation of agricultural legacy nutrient loads yields an accumulation of 0.5–4.0 Mt N and 0.3–1.2 Mt P in the Baltic Sea and 0.4–0.5 Mt P in agricultural soils within the catchment. The costs for removing or immobilising this amount of nutrients via deep water oxygenation, mussel farming and soil gypsum amendment are in the range of few tens to over 100 billion €. These preliminary results are meant as a basis for future studies and show that while requiring serious commitment to funding and implementation, remediating agricultural legacy loads is not infeasible and may even provide economic benefits to local communities in the long run.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.