Epithelial to mesenchymal transition (EMT) is a multipurpose process involved in wound healing, development, and certain pathological processes, such as metastasis formation. The Tks4 scaffold protein has been implicated in cancer progression; however, its role in oncogenesis is not well defined. In this study, the function of Tks4 was investigated in HCT116 colon cancer cells by knocking the protein out using the CRISPR/Cas9 system. Surprisingly, the absence of Tks4 induced significant changes in cell morphology, motility, adhesion and expression, and localization of E-cadherin, which are all considered as hallmarks of EMT. In agreement with these findings, the marked appearance of fibronectin, a marker of the mesenchymal phenotype, was also observed in Tks4-KO cells. Analysis of the expression of well-known EMT transcription factors revealed that Snail2 was strongly overexpressed in cells lacking Tks4. Tks4-KO cells showed increased motility and decreased cell–cell attachment. Collagen matrix invasion assays demonstrated the abundance of invasive solitary cells. Finally, the reintroduction of Tks4 protein in the Tks4-KO cells restored the expression levels of relevant key transcription factors, suggesting that the Tks4 scaffold protein has a specific and novel role in EMT regulation and cancer progression.
Apelin, a ligand of the APJ receptor, is overexpressed in several human cancers and plays an important role in tumor angiogenesis and growth in various experimental systems. We investigated the role of apelin signaling in the malignant behavior of cutaneous melanoma. Murine B16 and human A375 melanoma cell lines were stably transfected with apelin encoding or control vectors. Apelin overexpression significantly increased melanoma cell migration and invasion in vitro, but it had no impact on its proliferation. In our in vivo experiments, apelin significantly increased the number and size of lung metastases of murine melanoma cells. Melanoma cell proliferation rates and lymph and blood microvessel densities were significantly higher in the apelin-overexpressing pulmonary metastases. APJ inhibition by the competitive APJ antagonist MM54 significantly attenuated the in vivo pro-tumorigenic effects of apelin. Additionally, we detected significantly elevated circulating apelin and VEGF levels in patients with melanoma compared to healthy controls. Our results show that apelin promotes blood and lymphatic vascularization and the growth of pulmonary metastases of skin melanoma. Further studies are warranted to validate apelin signaling as a new potential therapeutic target in this malignancy.
There is an increasing demand for transdermal transport measurements to optimize topical drug formulations and to achieve proper penetration profile of cosmetic ingredients. Reflecting ethical concerns the use of both human and animal tissues is becoming more restricted. Therefore, the focus of dermal research is shifting towards in vitro assays. In the current proof-of-concept study a three-layer skin equivalent using human HaCaT keratinocytes, an electrospun polycaprolactone mesh and a collagen-I gel was compared to human excised skin samples. We measured the permeability of the samples for 2% caffeine cream using a miniaturized dynamic diffusion cell (“skin-on-a-chip” microfluidic device). Caffeine delivery exhibits similar transport kinetics through the artificial skin and the human tissue: after a rapid rise, a long-lasting high concentration steady state develops. This is markedly distinct from the kinetics measured when using cell-free constructs, where a shorter release was observable. These results imply that both the established skin equivalent and the microfluidic diffusion chamber can serve as a suitable base for further development of more complex tissue substitutes.
Background: The microanatomical steps of malignant pleural mesothelioma (MPM) vascularization and the resistance mechanisms to anti-angiogenic drugs in MPM are unclear.Methods: We investigated the vascularization of intrapleurally implanted human P31 and SPC111 MPM cells. We also assessed MPM cell's motility, invasion and interaction with endothelial cells in vitro.Results: P31 cells exhibited significantly higher two-dimensional (2D) motility and three-dimensional (3D) invasion than SPC111 cells in vitro. In co-cultures of MPM and endothelial cells, P31 spheroids permitted endothelial sprouting (ES) with minimal spatial distortion, whereas SPC111 spheroids repealed endothelial sprouts. Both MPM lines induced the early onset of submesothelial microvascular plexuses covering large pleural areas including regions distant from tumor colonies. The development of these microvascular networks occurred due to both intussusceptive angiogenesis (IA) and ES and was accelerated by vascular endothelial growth factor A (VEGF-A)-overexpression. Notably, SPC111 colonies showed different behavior to P31 cells. P31 nodules incorporated tumor-induced capillary plexuses from the earliest stages of tumor formation. P31 cells deposited a collagenous matrix of human origin which provided "space" for further intratumoral angiogenesis. In contrast, SPC111 colonies pushed the capillary plexuses away and thus remained avascular for weeks. The key event in SPC111 vascularization was the development of a desmoplastic matrix of mouse origin. Continuously invaded by SPC111 cells, this matrix transformed into intratumoral connective tissue trunks, providing a route for ES from the diaphragm.Conclusions: Here, we report two distinct growth patterns of orthotopically implanted human MPM xenografts. In the invasive pattern, MPM cells invade and thus co-opt peritumoral capillary plexuses. In the pushing/desmoplastic pattern, MPM cells induce a desmoplastic response within the underlying tissue which allows the ingrowth of a nutritive vasculature from the pleura.
Malignant pleural mesothelioma (MPM) has an overall poor prognosis and unsatisfactory treatment options. MPM nodules, protruding into the pleural cavity may have growth and spreading dynamics distinct that of other solid tumors. We demonstrate that multicellular aggregates can develop spontaneously in the majority of tested MPM cell lines when cultured at high cell density. Surprisingly, the nodule-like aggregates do not arise by excessive local cell proliferation, but by myosin II-driven cell contractility. Prominent actin cables, spanning several cells, are abundant both in cultured aggregates and in MPM surgical specimens. We propose a computational model for in vitro MPM nodule development. Such a self-tensioned Maxwell fluid exhibits a pattern-forming instability that was studied by analytical tools and computer simulations. Altogether, our findings may underline a rational for targeting the actomyosin system in MPM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.