Aims. We aim to present a generalized Bayesian inference method for constraining interiors of super Earths and sub-Neptunes. Our methodology succeeds in quantifying the degeneracy and correlation of structural parameters for high dimensional parameter spaces. Specifically, we identify what constraints can be placed on composition and thickness of core, mantle, ice, ocean, and atmospheric layers given observations of mass, radius, and bulk refractory abundance constraints (Fe, Mg, Si) from observations of the host star's photospheric composition. Methods. We employed a full probabilistic Bayesian inference analysis that formally accounts for observational and model uncertainties. Using a Markov chain Monte Carlo technique, we computed joint and marginal posterior probability distributions for all structural parameters of interest. We included state-of-the-art structural models based on self-consistent thermodynamics of core, mantle, high-pressure ice, and liquid water. Furthermore, we tested and compared two different atmospheric models that are tailored for modeling thick and thin atmospheres, respectively. Results. First, we validate our method against Neptune. Second, we apply it to synthetic exoplanets of fixed mass and determine the effect on interior structure and composition when (1) radius; (2) atmospheric model; (3) data uncertainties; (4) semi-major axes; (5) atmospheric composition (i.e., a priori assumption of enriched envelopes versus pure H/He envelopes); and (6) prior distributions are varied. Conclusions. Our main conclusions are: (1) given available data, the range of possible interior structures is large; quantification of the degeneracy of possible interiors is therefore indispensable for meaningful planet characterization. (2) Our method predicts models that agree with independent estimates of Neptune's interior. (3) Increasing the precision in mass and radius leads to much improved constraints on ice mass fraction, size of rocky interior, but little improvement in the composition of the gas layer, whereas an increase in the precision of stellar abundances enables to better constrain mantle composition and relative core size; (4) for thick atmospheres, the choice of atmospheric model can have significant influence on interior predictions, including the rocky and icy interior. The preferred atmospheric model is determined by envelope mass. This study provides a methodology for rigorously analyzing general interior structures of exoplanets which may help to understand how exoplanet interior types are distributed among star systems. This study is relevant in the interpretation of future data from missions such as TESS, CHEOPS, and PLATO.
Aims. We compute, for the first time, self-consistent models of planet growth including the effect of envelope enrichment. The change of envelope metallicity is assumed to be the result of planetesimal disruption or icy pebble sublimation. Methods. We solve internal structure equations taking into account global energy conservation for the envelope to compute in-situ planetary growth. We consider different opacities and equations of state suited for a wide range of metallicities. Results. We find that envelope enrichment speeds up the formation of gas giants. It also explains naturally the formation of low and intermediate mass objects with large fractions of H-He (∼ 20 -30 % in mass). High opacity models explain well the metallicity of the giant planets of the solar system, whereas low opacity models are suited for forming small mass objects with thick H-He envelopes and gas giants with sub-solar envelope metallicities. We find good agreement between our models and the estimated water abundance for WASP-43b. For HD 189733b, HD 209458b and WASP-12b we predict fractions of water larger than what is estimated from observations, by at least a factor ∼ 2. Conclusions. Envelope enrichment by icy planetesimals is the natural scenario to explain the formation of a large variety of objects, ranging from mini-Neptunes, to gas giants. We predict that the total and envelope metallicity decrease with planetary mass.
The standard model for giant planet formation is based on the accretion of solids by a growing planetary embryo, followed by rapid gas accretion once the planet exceeds a socalled critical mass 1 . The dominant size of the accreted solids (cm-size particles named pebbles or km to hundred km-size bodies named planetesimals) is, however, unknown 1,2 . Recently, high-precision measurements of isotopes in meteorites provided evidence for the existence of two reservoirs in the early Solar System 3 . These reservoirs remained separated from ~1 until ~ 3 Myr after the beginning of the Solar System's formation. This separation is interpreted as resulting from Jupiter growing and becoming a barrier for material transport. In this framework, Jupiter reached ~20 Earth masses (M ⊕ ) within ~1 Myr and slowly grew to ~50 M ⊕ in the subsequent 2 Myr before reaching its present-day mass 3 . The evidence that Jupiter slowed down its growth after reaching 20 M ⊕ for at least 2 Myr is puzzling because a planet of this mass is expected to trigger fast runaway gas accretion 4,5 . Here, we use theoretical models to describe the conditions allowing for such a slow accretion and show that Jupiter grew in three distinct phases. First, rapid pebble accretion brought the major part of Jupiter's core mass. Second, slow planetesimal accretion provided the energy required to hinder runaway gas accretion during 2 Myr. Third, runaway gas accretion proceeded. Both pebbles and planetesimals therefore have an important role in Jupiter's formation.
The existence of a radius valley in the Kepler size distribution stands as one of the most important observational constraints to understand the origin and composition of exoplanets with radii between those of Earth and Neptune. In this work we provide insights into the existence of the radius valley, first from a pure formation point of view and then from a combined formation-evolution model. We run global planet formation simulations including the evolution of dust by coagulation, drift, and fragmentation, and the evolution of the gaseous disc by viscous accretion and photoevaporation. A planet grows from a moon-mass embryo by either silicate or icy pebble accretion, depending on its position with respect to the water ice line. We include gas accretion, type I–II migration, and photoevaporation driven mass-loss after formation. We perform an extensive parameter study evaluating a wide range of disc properties and initial locations of the embryo. We find that due to the change in dust properties at the water ice line, rocky cores form typically with ∼3 M⊕ and have a maximum mass of ∼5 M⊕, while icy cores peak at ∼10 M⊕, with masses lower than 5 M⊕ being scarce. When neglecting the gaseous envelope, the formed rocky and icy cores account naturally for the two peaks of the Kepler size distribution. The presence of massive envelopes yields planets more massive than ∼10 M⊕ with radii above 4 R⊕. While the first peak of the Kepler size distribution is undoubtedly populated by bare rocky cores, as shown extensively in the past, the second peak can host half-rock–half-water planets with thin or non-existent H-He atmospheres, as suggested by a few previous studies. Some additional mechanisms inhibiting gas accretion or promoting envelope mass-loss should operate at short orbital periods to explain the presence of ∼10–40 M⊕ planets falling in the second peak of the size distribution.
Context. Within the core accretion scenario of planetary formation, most simulations performed so far always assume the accreting envelope to have a solar composition. From the study of meteorite showers on Earth and numerical simulations, we know that planetesimals must undergo thermal ablation and disruption when crossing a protoplanetary envelope. Thus, once the protoplanet has acquired an atmosphere, not all planetesimals reach the core intact, i.e. the primordial envelope (mainly H and He) gets enriched in volatiles and silicates from the planetesimals. This change of envelope composition during the formation can have a significant effect on the final atmospheric composition and on the formation timescale of giant planets. Aims. We investigate the physical implications of considering the envelope enrichment of protoplanets due to the disruption of icy planetesimals during their way to the core. Particular focus is placed on the effect on the critical core mass for envelopes where condensation of water can occur. Methods. Internal structure models are numerically solved with the implementation of updated opacities for all ranges of metallicities and the software Chemical Equilibrium with Applications to compute the equation of state. This package computes the chemical equilibrium for an arbitrary mixture of gases and allows the condensation of some species, including water. This means that the latent heat of phase transitions is consistently incorporated in the total energy budget. Results. The critical core mass is found to decrease significantly when an enriched envelope composition is considered in the internal structure equations. A particularly strong reduction of the critical core mass is obtained for planets whose envelope metallicity is larger than Z ≈ 0.45 when the outer boundary conditions are suitable for condensation of water to occur in the top layers of the atmosphere. We show that this effect is qualitatively preserved even when the atmosphere is out of chemical equilibrium. Conclusions. Our results indicate that the effect of water condensation in the envelope of protoplanets can severely affect the critical core mass, and should be considered in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.