MRC-5 cells are a well-characterized human diploid fibroblast cell line approved for vaccine production and favoured for the routine propagation of human cytomegalovirus (HCMV). Ectopic expression of telomerase in fibroblasts is capable of overcoming replicative senescence induced by telomere shortening. Following delivery of the hTERT gene to MRC-5 cells using a retrovirus vector three clones were generated that (i) expressed functional telomerase activity, (ii) exhibited telomere extension and (iii) were sustained for 100 population doublings. Immortalized MRC-5-hTERT and also HCA2-hTERT human fibroblasts were both fully permissive for HCMV as determined by plaque assay, studies of virus growth kinetics and measurement of virus yields. Furthermore, telomerase-immortalized HCA2 cells proved capable of supporting the stable maintenance of an EBV-based episomal vector with efficient transgene expression when driven by the HCMV immediate early promoter. An indicator cell line suitable for the efficient detection of HCMV infection was also generated using an episome containing a reporter gene (lacZ ) under the control of the HCMV β-2.7 early promoter. Telomerase immortalization of human fibroblasts will thus facilitate the growth and detection of HCMV and also the generation of helper cell lines for the propagation of HCMV deletion mutants. Immortalization of fibroblasts by telomerase does not affect cell morphology or growth characteristics. The MRC-5-hTERT clones may therefore be suitable for additional applications in virology, cell biology, vaccine production and biotechnology.
An initiating role for RAS oncogene mutation in several epithelial cancers is supported by its high incidence in early-stage tumors and its ability to induce proliferation in the corresponding normal cells in vitro. Using retroviral transduction of thyroid epithelial cells as a model we ask here: (i) how mutant RAS can induce long-term proliferation in an epithelial cell in contrast to the premature senescence observed in fibroblasts; and (ii) what is the "clock" which eventually triggers spontaneous growth arrest even in epithelial clones generated by mutant RAS. The early response to RAS activation in thyroid epithelial cells showed two features not seen in fibroblasts: (i) a marked decrease in expression of the cyclin-dependent kinase inhibitor (CDKI) p27 kip1 and (ii) the absence of any induction of p21 waf1 . When proliferation eventually ceased (after up to 20 population doublings) this occurred despite undiminished expression of mutant RAS and was tightly correlated with a return to the initial high level of p27 kip1 expression, together with the de novo appearance of p16 ink4a . Importantly, neither the CDKI changes nor the proliferative life span of RAS-induced epithelial clones was altered by induction of telomerase activity through forced expression of the catalytic subunit, hTERT, at levels sufficient to immortalize human fibroblasts. These data provide a basis for cell-type differences in sensitivity to RAS-induced proliferation which may explain the corresponding tumor-type specificity of RAS mutation. They also show for the first time in a primary human cell model that a telomere-independent mechanism can limit not only physiological but also oncogene-driven proliferation, pointing therefore to a tumour suppressor mechanism additional, or alternative, to the telomere clock.
Despite several recent studies, the biological status and clinical relevance of telomerase expression in tumours derived from the thyroid follicular cell remain controversial. This study has analysed a series of normal, benign, and malignant thyroid samples using two novel approaches: the use of purified epithelial cell fractions to eliminate false-positives due to telomerase-positive infiltrating lymphocytes; and the simultaneous measurement of telomere length to provide a clearer interpretation of telomere dynamics in thyroid neoplasia. The data obtained support the prediction that the epithelial component of non-neoplastic thyroid and of follicular adenomas is telomerase-negative, any positive results being explicable by lymphocyte infiltration. In contrast, many malignant tumours, both follicular and papillary, were telomerase-positive. However, serial dilution of extracts indicated a wide spectrum of activity in these cancers, possibly related to variation in the proportion of telomerase-positive cells. Furthermore, an unexpectedly high proportion were telomerase-negative, a finding which was not explicable by technical problems such as TRAP (telomeric repeat amplification protocol) assay sensitivity. Many of these apparently telomerase-negative tumours had abnormally long telomeres. Correlation of telomerase and telomere length data suggests that thyroid cancers fall into three biological groups: telomerase-positive lesions, consistent with the conventional model of telomere erosion followed by telomerase reactivation; telomerase-negative tumours, which maintain telomere length by a mechanism independent of telomerase; and telomerase-negative tumours which are still undergoing telomere erosion and may therefore be composed of mortal cancer cells. From a clinical standpoint, it is concluded that telomerase detection on unfractionated tissue, such as fine needle aspirates, is of no value as a marker of malignancy in follicular lesions, due to both low sensitivity and specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.