The development of noncovalent halogen bonding (XB) catalysis is rapidly gaining traction, as isolated reports documented better performance than the well-established hydrogen bonding thiourea catalysis. However, convincing cases allowing XB activation to be competitive in challenging bond formations are lacking. Herein, we report a robust XB catalyzed 2-deoxyglycosylation, featuring a biomimetic reaction network indicative of dynamic XB activation. Benchmarking studies uncovered an improved substrate tolerance compared to thiourea-catalyzed protocols. Kinetic investigations reveal an autoinductive sigmoidal kinetic profile, supporting an in situ amplification of a XB dependent active catalytic species. Kinetic isotopic effect measurements further support quantum tunneling in the rate determining step. Furthermore, we demonstrate XB catalysis tunability via a halogen swapping strategy, facilitating 2-deoxyribosylations of D-ribals. This protocol showcases the clear emergence of XB catalysis as a versatile activation mode in noncovalent organocatalysis, and as an important addition to the catalytic toolbox of chemical glycosylations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.