The lack of sensorial input in the e-commerce domain impairs consumers' online apparel purchases. Therefore, it is important to identify possible compensatory cues to present the 'feel' of a garment in an enhanced way. This study investigates how visual interpretation of the feel of fabrics is related to the actual feel. Haptic textile attributes of seven fabric swatches were quantified in an online questionnaire (part I), simulating an online shopping experience. Separately, a physical assessment of samples mailed to participants (part II), simulating an inperson shopping experience, was performed. Part I and II comprised 20 participants each. No robust significant difference was found between sex. The comparison of the visual only and the visual-haptic assessment showed higher variability and lower scores of the haptic attributes in the visual only session. Especially textile surface structure related haptic attributes could not be conveyed visually and needed tactile sensory input to assess.
Purpose Sports garments play an important role in the well-being of an athlete by protecting the wearer from changing environmental conditions and providing a comfortable feel. Clothing requirements have changed in recent years and demand for apparel with a higher comfort performance has been rising. Hence, the purpose of this study is to explore consumers’ expectations and perception of comfort and to examine how different textiles are perceived by consumers to provide useful knowledge that allows to engineer comfort into fabrics and sports garments. Design/methodology/approach This online survey comprised 292 respondents, classified by sex, age, nationality and physical activity. The respondents were asked a total of 18 questions through the Bristol Online Survey tool to explore expectation, perception and preference of clothing comfort, specifically of sportswear. Findings Fit and comfort are closely linked together, both forming part of the clothing comfort concept. When purchasing garments online, the haptics of fabrics were identified as a crucial missing parameter. However, priorities of attributes within the concept varied according to the person’s sex and nationality. Women put more emphasis on garment fit and showed a higher need for tactile input, whereas men prioritised physiological comfort descriptors, i.e. properties which facilitate thermoregulation. Furthermore, there is an increased importance of physiological comfort parameters for people exercising for 10 or more hours per week. Finally, it was possible to identify common associations and preferences for textile materials (cotton, polyester, cotton/polyester blend and wool). However, consideration should be taken concerning sex and nationality. Originality/value Sex and nationality are parameters modulating the clothing comfort concept and the conceptualised feel of materials. Therefore, the sex and nationality of the end-consumer should be considered during the development phase of sports garments and particular attention should be given to the targeted market in which these will be sold.
To assess the thermoregulatory capacities of backpack-designs, five male participants were equipped with a temperature and moisture measuring system. Relative humidity (rH) and temperature (T) were measured underneath the participants’ t-shirt—microclimate (MC)—and between shirt and backpack—interlayer climate (ILC). Participants completed a test protocol simulating a hiking exercise in three conditions in a randomized order: (W) without backpack and (B1-B2) with each of the backpacks (total weight: 5.4 kg). The test-protocol consisted of a 5-min rest, 10-min walk at 4 km/h without gradient, 15-min walk at 4 km/h with 8% incline, and a final 10-min rest. Results showed that the temperature and absolute humidity (aH) values generally decreased from the microclimate to the interlayer climate. Differences of up to ΔT = 1.27 °C and ΔaH = 2.55 g/m3 in the microclimate of the upper back area were observed for different backpack designs, indicating the influence of backpack design on thermoregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.