Aims/hypothesis The role of TNF-α in impaired wound healing in diabetes was examined by focusing on fibroblasts. Methods Small excisional wounds were created in the db/db mice model of type 2 diabetes and normoglycaemic littermates, and in a streptozotocin-induced type 1 diabetes mouse model and control mice. Fibroblast apoptosis was measured by the TUNEL assay, proliferation by detection of proliferating cell nuclear antigen, and forkhead box O1 (FOXO1) activity by DNA binding and nuclear translocation. TNF-α was specifically inhibited by pegsunercept. Results Diabetic wounds had increased TNF-α, fibroblast apoptosis, caspase-3/7 activity and activation of the pro-apoptotic transcription factor FOXO1, and decreased proliferating cell nuclear antigen positive fibroblasts (p<0.05). TNF-α inhibition improved healing in the diabetic mice and increased fibroblast density. This may be explained by a decrease in fibroblast apoptosis and increased proliferation when TNF-α was blocked (p <0.05). Although decreased fibroblast proliferation and enhanced FOXO1 activity were investigated in type 2 diabetes, they may also be implicated in type 1 diabetes. In vitro, TNF-α enhanced mRNA levels of gene sets related to apoptosis and Akt and p53 but not mitochondrial or cell-cycle pathways. FOXO1 small interfering RNA reduced gene sets that regulate apoptosis, Akt, mitochondrial and cell-cycle pathways. TNF-α also increased genes involved in inflammation, cytokine, Toll-like receptor and nuclear factor-kB pathways, which were significantly reduced by FOXO1 knockdown. Conclusions/interpretation These studies indicate that TNF-α dysregulation in diabetic wounds impairs healing, which may involve enhanced fibroblast apoptosis and decreased proliferation. In vitro, TNF-α induced gene sets through FOXO1 that regulate a number of pathways that could influence inflammation and apoptosis.
Suppression of tumorigenicity 18 (ST18) and the homologues neural zinc-finger protein-3 (NZF3) and myelin transcription factor 3 (Myt3) are transcription factors with unknown function. Previous studies have established that they repress transcription of a synthetic reporter construct consisting of the consensus sequence AAAGTTT linked to the thymidine kinase promoter. In addition, ST18 exhibits significantly reduced expression in breast cancer and breast cancer cell lines. We report here for the first time evidence that ST18 mediates tumor necrosis factor (TNF) -alpha induced mRNA levels of proapoptotic and proinflammatory genes in fibroblasts by mRNA profiling and silencing with ST18 small interfering RNA (siRNA). Gene set enrichment analysis and mRNA profiling support this conclusion by identifying several apoptotic and inflammatory pathways that are down-regulated by ST18 siRNA. In addition, ST18 siRNA reduces TNF-induced fibroblast apoptosis and caspase-3/7 activity. Fibroblasts that overexpress ST18 by transient transfection exhibit significantly increased apoptosis and increased expression of TNF-alpha, interleukin (IL) -1alpha, and IL-6. In addition, cotransfection of ST18 and a TNF-alpha or IL-1alpha reporter construct demonstrates that ST18 overexpression in fibroblasts significantly enhanced promoter activity of these genes. Taken together, these studies demonstrate that the transcription factor ST18/NZF3 regulates the mRNA levels of proapoptotic and proinflammatory genes in revealing a previously unrecognized function.
The classical M1/M2 polarity of macrophages may not be applicable to inflammatory lung diseases including chronic obstructive pulmonary disease (COPD) due to the complex microenvironment in lungs and the plasticity of macrophages. We examined macrophage sub-phenotypes in bronchoalveolar lavage (BAL) fluid in 25 participants with CD40 (a M1 marker) and CD163 (a M2 marker). Of these, we performed RNA-sequencing on each subtype in 10 patients using the Illumina NextSeq 500. Approximately 25% of the macrophages did not harbor classical M1 or M2 surface markers (double negative, DN), and these cells were significantly enriched in COPD patients compared with non-COPD patients (46.7% vs. 14.5%, p < 0.001). 1886 genes were differentially expressed in the DN subtype compared with all other subtypes at a 10% false discovery rate. The 602 up-regulated genes included 15 mitochondrial genes and were enriched in 86 gene ontology (GO) biological processes including inflammatory responses. Modules associated with cellular functions including oxidative phosphorylation were significantly down-regulated in the DN subtype. Macrophages in the human BAL fluid, which were negative for both M1/M2 surface markers, harbored a gene signature that was pro-inflammatory and suggested dysfunction in cellular homeostasis. These macrophages may contribute to the pathogenesis and manifestations of inflammatory lung diseases such as COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.