Background: Finding the tumor location in the prostate is an essential pathological step for prostate cancer diagnosis and treatment. The location of the tumor -the laterality -can be unilateral (the tumor is affecting one side of the prostate), or bilateral on both sides. Nevertheless, the tumor can be overestimated or underestimated by standard screening methods. In this work, a combination of efficient machine learning methods for feature selection and classification are proposed to analyze gene activity and select them as relevant biomarkers for different laterality samples. Results: A data set that consists of 450 samples was used in this study. The samples were divided into three laterality classes ( left, right, bilateral). The aim of this work is to understand the genomic activity in each class and find relevant genes as indicators for each class with nearly 99% accuracy. The system identified groups of differentially expressed genes (RTN1, HLA-DMB, MRI1) that are able to differentiate samples among the three classes. Conclusion: The proposed method was able to detect sets of genes that can identify different laterality classes. The resulting genes are found to be strongly correlated with disease progression. HLA-DMB and EIF4G2, which are detected in the set of genes can detect the left laterality, were reported earlier to be in the same pathway called Allograft rejection SuperPath.
1) Background:One of the most common cancers that affect North American men and men worldwide is prostate cancer. The Gleason score is a pathological grading system to examine the potential aggressiveness of the disease in the prostate tissue. Advancements in computing and next-generation sequencing technology now allow us to study the genomic profiles of patients in association with their different Gleason scores more accurately and effectively. (2) Methods: In this study, we used a novel machine learning method to analyse gene expression of prostate tumours with different Gleason scores, and identify potential genetic biomarkers for each Gleason group. We obtained a publicly-available RNA-Seq dataset of a cohort of 104 prostate cancer patients from the National Center for Biotechnology Information's (NCBI) Gene Expression Omnibus (GEO) repository, and categorised patients based on their Gleason scores to create a hierarchy of disease progression. A hierarchical model with standard classifiers in different Gleason groups, also known as nodes, was developed to identify and predict nodes based on their mRNA or gene expression. In each node, patient samples were analysed via class imbalance and hybrid feature selection techniques to build the prediction model. The outcome from analysis of each node was a set of genes that could differentiate each Gleason group from the remaining groups. To validate the proposed method, the set of identified genes were used to classify a second dataset of 499 prostate cancer patients collected from cBioportal. (3) Results: The overall accuracy of applying this novel method to the first dataset was 93.3%; the method was further validated to have 87% accuracy using the second dataset. This method also identified genes that were not previously reported as potential biomarkers for specific Gleason groups. In particular, PIAS3 was identified as a potential biomarker for Gleason score 4 + 3 = 7, and UBE2V2 for Gleason score 6. (4) Insight: Previous reports show that the genes predicted by this newly proposed method strongly correlate with prostate cancer development and progression. Furthermore, pathway analysis shows that both PIAS3 and UBE2V2 share similar protein interaction pathways, the JAK/STAT signaling process.
INTRODUCTION: An American College of Obstetricians and Gynecologists (ACOG) committee opinion in 2011 urged health insurance plans to cover transgender and gender non-binary (TGNB) affirming care and in 2017, another one reviewed medical guidelines that obstetrician-gynecologists should apply in addressing the needs of TGNB adolescents. Given this evolving clinical landscape, a difference in education regarding TGNB specific training, education and experience levels between Ob/Gyn residents and attendings was studied. METHODS: A twenty-one item survey was emailed to APGO program coordinators to distribute to their program directors and residents from February to April, 2018. This anonymous survey included demographics and TGNB perceptions, education and hands-on training. RESULTS: Of the 150 programs contacted, an unknown number of surveys was distributed. 200 surveys were email assessed, with 164 filled out. Providers included 2 PA/NP/APN (excluded from analysis), 49 attendings and 113 residents. Of the 126 physicians who cared for TGNB patients, 51 providers (44.73%) cared for five or more TGNB patients. Fifty-eight percent of residents and 79% of attendings reported inadequate/no formal TGNB training. One attending (2%) vs 11 residents (9.7%) reported 11 or more hours of TGNB education during medical school. Proportionally more attendings vs residents felt uncomfortable performing (33.33% vs 8.65%) and had performed fewer (14.28% vs 25.66%) gender affirmation hysterectomies/oophorectomies. CONCLUSION: These results suggest that attendings less contemporarily trained than current residents had less TGNB specific training and clinical experience. Additional educational endeavors for the entire health care team would be a positive asset to advancing TGNC healthcare.
Motivation The standard bootstrap method is used throughout science and engineering to perform general-purpose non-parametric resampling and re-estimation. Among the most widely cited and widely used such applications is the phylogenetic bootstrap method, which Felsenstein proposed in 1985 as a means to place statistical confidence intervals on an estimated phylogeny (or estimate ‘phylogenetic support’). A key simplifying assumption of the bootstrap method is that input data are independent and identically distributed (i.i.d.). However, the i.i.d. assumption is an over-simplification for biomolecular sequence analysis, as Felsenstein noted. Results In this study, we introduce a new sequence-aware non-parametric resampling technique, which we refer to as RAWR (‘RAndom Walk Resampling’). RAWR consists of random walks that synthesize and extend the standard bootstrap method and the ‘mirrored inputs’ idea of Landan and Graur. We apply RAWR to the task of phylogenetic support estimation. RAWR’s performance is compared to the state-of-the-art using synthetic and empirical data that span a range of dataset sizes and evolutionary divergence. We show that RAWR support estimates offer comparable or typically superior type I and type II error compared to phylogenetic bootstrap support. We also conduct a re-analysis of large-scale genomic sequence data from a recent study of Darwin’s finches. Our findings clarify phylogenetic uncertainty in a charismatic clade that serves as an important model for complex adaptive evolution. Availability and implementation Data and software are publicly available under open-source software and open data licenses at: https://gitlab.msu.edu/liulab/RAWR-study-datasets-and-scripts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.