Microscale Thermoelectric Generators (microTEGs) have a high application potential for energy harvesting for autonomous microsystems. In contrast to conventional thermoelectric generators, microTEGs can only supply small output-voltages. Therefore, voltage converters are required to provide supply-voltages that are sufficiently high to power microelectronics. However, for high conversion efficiency, voltage converters need to be optimized for the limited input voltage range and the typically high internal resistance of microTEGs. To overcome the limitations of conventional voltage converters we present an optimized self-startup voltage converter with dynamic maximum power point tracking. The performance potential of our concept is theoretically and experimentally analyzed. The voltage conversion interface demonstrates energy harvesting from open-circuit voltages as low as 30.7 mV, and enables independent and full start-up from 131 mV. No additional external power supply is required at any time during operation. It can be operated with a wide range of internal resistances from 20.6 to − 4 kΩ with a conversation efficiency between η = 68–79%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.