Geo-referenced 3D models are currently in demand as an initial knowledge base for cultural heritage projects and forest inventories. The mobile laser scanning (MLS) used for geo-referenced 3D models offers ever greater efficiency in the acquisition of 3D data and their subsequent application in the fields of forestry. In this study, we have analysed the performance of an MLS with simultaneous localisation and mapping technology (SLAM) for compiling a tree inventory in a historic garden, and we assessed the accuracy of the estimates of diameter at breast height (DBH, a height of 1.30 m) calculated from three fitting algorithms: RANSAC, Monte Carlo, and Optimal Circle. The reference sample used was 378 trees from the Island Garden, a historic garden and UNESCO World Heritage site in Aranjuez, Spain. The time taken to acquire the data by MLS was 27 min 37 s, in an area of 2.38 ha. The best results were obtained with the Monte Carlo fitting algorithm, which was able to estimate the DBH of 77% of the 378 trees in the study, with a root mean squared error (RMSE) of 5.31 cm and a bias of 1.23 cm. The proposed methodology enabled a supervised detection of the trees and automatically estimated the DBH of most trees in the study, making this a useful tool for the management and conservation of a historic garden.
This research focuses on the study of the ruins of a large building known as “El Torreón” (the Tower), belonging to the Ulaca oppidum (Solosancho, Province of Ávila, Spain). Different remote sensing and geophysical approaches have been used to fulfil this objective, providing a better understanding of the building’s functionality in this town, which belongs to the Late Iron Age (ca. 300–50 BCE). In this sense, the outer limits of the ruins have been identified using photogrammetry and convergent drone flights. An additional drone flight was conducted in the surrounding area to find additional data that could be used for more global interpretations. Magnetometry was used to analyze the underground bedrock structure and ground penetrating radar (GPR) was employed to evaluate the internal layout of the ruins. The combination of these digital methodologies (surface and underground) has provided a new perspective for the improved interpretation of “El Torreón” and its characteristics. Research of this type presents additional guidelines for better understanding of the role of this structure with regards to other buildings in the Ulaca oppidum. The results of these studies will additionally allow archaeologists to better plan future interventions while presenting new data that can be used for the interpretation of this archaeological complex on a larger scale.
Abstract. Various geomatic measurement techniques can be efficiently combined for surveying glacier fronts. Aerial photographs and satellite images can be used to determine the position of the glacier terminus. If the glacier front is easily accessible, the classic surveys using theodolite or total station, GNSS (Global Navigation Satellite System) techniques, laser-scanner or close-range photogrammetry are possible. When the accessibility to the glacier front is difficult or impossible, close-range photogrammetry proves to be useful, inexpensive and fast. In this paper, a methodology combining photogrammetric methods and other techniques is applied to determine the calving front position of Johnsons Glacier. Images taken in 2013 with an inexpensive nonmetric digital camera are georeferenced to a global coordinate system by measuring, using GNSS techniques, support points in accessible areas close to the glacier front, from which control points in inaccessible points on the glacier surface near its calving front are determined with theodolite using the direct intersection method. The front position changes of Johnsons Glacier during the period 1957-2013, as well as those of the land-terminating fronts of Argentina, Las Palmas and Sally Rocks lobes of Hurd glacier, are determined from different geomatic techniques such as surface-based GNSS measurements, aerial photogrammetry and satellite optical imagery. This provides a set of frontal positions useful, e.g., for glacier dynamics modeling and mass balance studies.
The lack of high-resolution thermal images is a limiting factor in the fusion with other sensors with a higher resolution. Different families of algorithms have been designed in the field of remote sensors to fuse panchromatic images with multispectral images from satellite platforms, in a process known as pansharpening. Attempts have been made to transfer these pansharpening algorithms to thermal images in the case of satellite sensors. Our work analyses the potential of these algorithms when applied to thermal images from unmanned aerial vehicles (UAVs). We present a comparison, by means of a quantitative procedure, of these pansharpening methods in satellite images when they are applied to fuse high-resolution images with thermal images obtained from UAVs, in order to be able to choose the method that offers the best quantitative results. This analysis, which allows the objective selection of which method to use with this type of images, has not been done until now. This algorithm selection is used here to fuse images from thermal sensors on UAVs with other images from different sensors for the documentation of heritage, but it has applications in many other fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.