Stochastic scheduling addresses several forms of uncertainty to represent better production environments in the real world. Stochastic scheduling has applications on several areas such as logistics, transportation, production, and healthcare, among others. This paper aims to evaluate the performance of various greedy functions for a GRASP-based approach, under stochastic processing times. Since simulation is used for estimating the objective function, two simulation techniques, Monte Carlo simulation and Common Random Numbers (CRN), are used to compare the performance of different greedy (utility) functions within the GRASP. In order to validate the proposed methodology, the expected total weighted tardiness minimization for a single machine problem was taken as case study. Results showed that both, CRN and Monte Carlo, are not statistically different regarding the expected weighted tardiness results. However, CRN showed a better performance in terms of simulation replications and the confidence interval size for the difference between means. Furthermore, the statistical analysis confirmed that there is a significant difference between greedy functions.Growing Science Ltd. All rights reserved. 7
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.