This article addresses the problem of the optimal selection of conductors in asymmetric three-phase distribution networks from a combinatorial optimization perspective, where the problem is represented by a mixed-integer nonlinear programming (MINLP) model that is solved using a master-slave (MS) optimization strategy. In the master stage, an optimization model known as the generalized normal distribution optimization (GNDO) algorithm is proposed with an improvement stage based on the vortex search algorithm (VSA). Both algorithms work with discrete-continuous coding that allows us to represent the locations and gauges of the different conductors in the electrical distribution system. For the slave stage, the backward/forward sweep (BFS) algorithm is adopted. The numerical results obtained in the IEEE 8- and 27-bus systems demonstrate the applicability, efficiency, and robustness of this optimization methodology, which, in comparison with current methodologies such as the Newton metaheuristic algorithm, shows significant improvements in the values of the objective function regarding the balanced demand scenario for the 8- and 27-bus test systems (i.e., 10.30% and 1.40% respectively). On the other hand, for the unbalanced demand scenario, a reduction of 1.43% was obtained in the 27-bus system, whereas no improvement was obtained in the 8-bus grid. An additional simulation scenario associated with the three-phase version of the IEEE33-bus grid under unbalanced operating conditions is analyzed considering three possible load profiles. The first load profile corresponds to the yearly operation under the peak load conduction, the second case is associated with a daily demand profile, and the third operation case discretizes the demand profile in three periods with lengths of 1000 h, 6760 h, and 1000 h with demands of 100%, 60% and 30% of the peak load case. Numerical results show the strong influence of the expected demand behavior on the plan’s total costs, with variations upper than USD/year 260,000.00 between different cases of analysis. All implementations were developed in the MATLAB® programming environment.
This study addresses the problem of selecting the conductor sizes for medium-voltage distribution networks with radial configurations. The optimization model that represents this problem is part of the mixed-integer non-linear programming (MINLP) models, in which a power flow must be solved for each possible combination of conductor sizes. The main objective of this optimization problem is to find the best set of conductor sizes that minimize an economic objective function composed of the total costs of conducting materials added with the expected annual costs of the energy losses by proposing a new hybrid optimization methodology from the family of combinatorial optimization methods. To solve the MINLP model, a master–slave optimization method based on the modified version of the gradient-based metaheuristic optimizer (MGbMO) combined with the successive approximation power flow method for unbalanced distribution networks is presented. The MGbMO defines the set of conductor sizes assignable for each distribution line using an integer codification. The slave stage (three-phase power flow) quantifies the total power losses and their expected annual operating costs. Numerical results in the IEEE 8-, 27-, and 85-bus grids demonstrate the effectiveness of the proposed master–slave optimizer when compared with multiple combinatorial optimization methods (vortex search algorithm, the Newton-metaheuristic optimizer, the traditional and Chu and Beasley genetic algorithms, and the tabu search approaches). Two scenarios regarding the demand behavior were analyzed for the IEEE 8- and 27-bus grids: a peak load operation was considered, and, for the IEEE 85-bus grid, the daily demand behavior, including the presence of renewable generators, was considered. The 85-bus grid allowed showing that the most realistic operative scenario for selecting conductors is the case where a demand curve is implemented since reductions over 40% in the annual investment and operating costs were found when compared to the peak load operating condition. All numerical validations were performed in MATLAB software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.