We present a forward semi-Lagrangian numerical method for systems of transport equations able to advect smooth and discontinuous fields with high-order accuracy. The numerical scheme is composed of an integration of the transport equations along the trajectory of material elements in a moving grid and a reconstruction of the fields in a reference regular mesh using a non-linear mapping and adaptive moment-preserving interpolations. The non-linear mapping allows for the arbitrary deformation of material elements. Additionally, interpolations can represent discontinuous fields using adaptive-order interpolation near jumps detected with a slope-limiter function. Due to the large number of operations during the interpolations, a serial implementation of this scheme is computationally expensive. The scheme has been accelerated in many-core parallel architectures using a thread per grid node and parallel data gathers. We present a series of tests that prove the scheme to be an attractive option for simulating advection equations in multi-dimensions with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.